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Abstract. We show that quantile regression is better than ordinary-least-squares (OLS)
regression in forecasting profitability for a range of profitability measures following the
conventional setup of the accounting literature, including the mean absolute forecast
error (MAFE) evaluation criterion. Moreover, we perform both a simulated-data and an
archival-data analysis to examine how the forecasting performance of quantile regression
against OLS changes with the shape of the profitability distribution. Considering the
MAFE and mean squared forecast error (MSFE) criteria together, we see that the quantile
regression is more accurate relative to OLS when the profitability to be forecast has a
heavier-tailed distribution. In addition, the asymmetry of the profitability distribution has
either a U-shape or an inverted-U-shape effect on the forecasting accuracy of quantile
regression. An application of the distributional shape analysis framework to cash flow
forecasting demonstrates the usefulness of the framework beyond profitability forecasting,
providing additional empirical evidence on the positive effect of tail-heaviness and
supporting the notion of an inverted-U-shape effect of asymmetry.
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1. Introduction
It is in the interest of different parties, including in-
vestors, analysts, and companies themselves, to ob-
tain more accurate profitability forecasts. Companies
have experienced extreme profits and losses more
often in recent decades.1 This is likely to impact the
distributional shape of profitability, increasing the
difficulty in forecasting profitability accurately.

To formulate forecasts as accurately as possible,
sophisticated market participants are likely to resort
to statistical methods. Ordinary-least-squares (OLS)
regression is a very popular choice, if not the preva-
lent choice. The least squares method has a very long
history dating back to 1795 (Courgeau 2012). In con-
trast, quantile regression (QR), an alternative ap-
proach based on the least absolute deviation (LAD)
method, was developed only four decades ago by
Koenker and Bassett (1978). Unlike the least squares
method, the LAD method is not sensitive to outliers
(Chen et al. 2008). Despite this advantage, QR appli-
cations in finance and accounting remain not popular.2

However, QR has long been considered an attractive
method in areas such as medicine, survival analysis,
and economics (Yu et al. 2003).

In this study, we conduct a series of analyses to
examine whether the QR approach to profitability
forecasting can be more accurate than the OLS ap-
proach, and if so, under what distributional shape of
profitability QR is likely to have higher forecasting
accuracy relative to OLS. The findings of this study
will help investors, analysts, and other market partici-
pants to make better decisions on adopting statistical
methods to forecast profitability and guide investment.
Our first analysis, a forecasting analysis, uses ar-

chival data to show that QR profitability forecasts are
more accurate than OLS forecasts. We follow the
conventional setup of the accounting literature, in-
cluding the mean absolute forecast error (MAFE)
evaluation criterion (Fairfield et al. 2009, Schröder
and Yim 2018). We consider four new profitability
measures in this analysis. They are the gross profit-
ability (GP) defined by Novy-Marx (2013), operating
profitability (OP) defined by Ball et al. (2015), and two
versions of cash-based operating profitability (CbOP)
defined by Ball et al. (2016).
Besides the new profitability measures above, we

also include the return on equity (ROE) and return
on net operating assets (RNOA) in our comparison.
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Prior research on profitability forecasting examines
these traditional measures of profitability, because
they are the inputs to accounting-based valuation
models (Fairfield et al. 2009, Schröder and Yim
2018). Their inclusion here facilitates the comparison
of our results with prior research findings. It is also
interesting to include ROE in its own right. This is the
profitability measure used in the Hou et al. (2015)
q-factor asset pricing model, whose performance is
comparable to and sometimes even better than that of
the Fama and French (1993) three-factor model and
the Carhart (1997) four-factor model.

Next, we conduct a large number of simulated
experiments (500 for each set of distribution types and
parameter combinations) to understandwhyQR fore-
casts are more accurate and to what extent this con-
tinues to hold under the mean squared forecast er-
ror (MSFE) evaluation criterion, as opposed to the
conventional MAFE criterion. Using the simulated
data, we perform a regression analysis to examine
how the accuracy of QR forecasts relative to OLS
forecasts varies with the shape of the profitability
distribution. In line with the statistics literature, we
focus on the tails and the asymmetry of the distri-
bution in characterizing its shape. To ensure the ro-
bustness of our results, we consider altogether three
tail-heaviness measures and five asymmetry mea-
sures (including the widely used kurtosis and skew-
ness coefficients). The results are highly similar across
the measures. In the interest of space, we report only
two of the tail-heaviness measures and three of the
asymmetry measures.

A key finding of our simulated-data distributional
shape analysis is that the accuracy of QR forecasts
relative to OLS forecasts increases as the sampling
distribution’s tails become heavier. This finding is
very consistent across the 16 × 16 parameter combi-
nations (varying from light to heavy tails or from low
to high asymmetry, holding constant the other as-
pect), the four distribution types examined, and the
different tail-heaviness measures considered, con-
trolling for the asymmetry of the sampling distribu-
tion, as well as its dispersion (in terms of standard
deviation). The finding is robust to whether the
Wilcoxon (signed-rank) test or the t-test is used.

We alsofind that the accuracy ofQR forecasts varies
with different measures of asymmetry, however, in a
less consistent manner. Note that we allow for pos-
itive and negative asymmetry, which is like positive
and negative skewness that represent a right tail
longer than the left and the other way around, re-
spectively. The simulated-data analysis shows that,
according to one of our forecasting accuracy mea-
sures, asymmetry always has a U-shape effect on the
forecasting performance of QR, that is, becomes
more accurate relative to OLS when the profitability

distribution is more asymmetric (in either direction).
However, under a second forecasting accuracymeasure,
the effect has an inverted-U shape if the prevalence is
determined by the t-test but again a U-shape if the
Wilcoxon test is used. This is in sharp contrast to the very
consistent effect of tail-heaviness.
The robust effect of tail-heaviness is in line with a

bit of wisdom from the statistics literature that is often
forgotten: the inclusion of even a few extreme ob-
servations can increase the sampling variance of the
mean much more than that of the median. Thus, by
moving away from normality toward a distribution
with heavy tails, the sample median can be more ef-
ficient than the sample mean as an estimator of the po-
pulation mean (Myers et al. 2010, Wilcox and Rousselet
2018). In light of this, it becomes clear why themedian
forecasts fromQR can bemore accurate than themean
forecasts fromOLSwhen the profitability distribution
under consideration has heavy tails.
The robust effect of tail-heaviness is also consistent

with a key insight from the machine learning litera-
ture. Regularization is an important step in machine
learning used to prevent overfitting a forecasting
model. Overfitting occurs when the estimation method
works too hard to find patterns in the training data and
mistakes those patterns due to random chance as though
they were highly representative features of the under-
lying true model (James et al. 2013). When this hap-
pens, the forecast error on the hold-out sample will be
quite large because the learned patterns caused by
random chance are unlikely to reappear.
By comparing QR to OLS in the forecasting context,

the former is likely to mitigate overfitting better when
the profitability distribution has heavy tails. Extreme
values of such distributions are observed more often
than those of the Gaussian. Yet, extreme-value ob-
servations still occur quite rarely and are unrepre-
sentative of other observations much closer to the
center. The OLS forecasting approach will work hard
to adjust its in-sample coefficient estimates to reduce
the quadratic loss of deviating from the extreme-value
observations. In contrast, the absolute loss of QR
forecasting is less affected by such observations and
hence likely to give more accurate forecasts when
assessed based on out-of-sample data. Thus, the ro-
bust nature of QR may be viewed as a kind of reg-
ularization built into its design.
To summarize, QR’s advantage in constructing

firm-specific forecasts based on samples pooled across
firms lies in the ability to mitigate the influence of
extreme-value observations. The advantage is not on
forecasting these extreme-value observations but on
forecasting the nonextreme-value observations, which
constitute the vast majority of a sample.
To corroborate the insight from the simulated ex-

periments, we run the same regression relating the
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accuracy of QR to tail-heaviness and asymmetry
using archival data. The data used comes from the
sample we use for the out-of-sample testing in the
forecasting analysis. Unlike the simulated experi-
ments, where it is straightforward to compute dis-
tributional shape measures based on many draws of
simulated profitability, archival data does not allow
this luxury. Even when some firms have sufficiently
long time series to give reliable estimates, the data
requirementwould induce a severe survivorship bias.
Therefore, we estimate the tail-heaviness and asym-
metry measures based on the profitability distribu-
tion across different firms for each industry-year. This
is consistent with the cross-sectional approach to
forecasting, which assumes that there is enough simi-
larity across different firms to warrant pooling them
together for forecasting,

The above is not the only difference between the
simulated and archival data. There are several. For
example, in the archival data, the individual firms’
absolute and squared forecast errors used for com-
puting the forecasting accuracy measures are based
on a full model consistent with Fairfield et al. (2009),
instead of the simple first-order autoregressivemodel
assumed in the simulated experiments. Moreover, the
archival data comes from an in-sample estimation
step using a rollingwindow of data available from the
previous 10 years, whereas the corresponding step in
the simulated experiments uses only one prior period
of simulated data.

Given such differences, it is not obvious that the
insights from the simulated experiments would be
robust enough to hold also in the archival data. We,
however, find a varying degree of support for the
insights. In both the unweighted and the weighted
regressions pooling all profitability measures together,
the effect of tail-heaviness on the accuracy of QR fore-
casts relative to OLS is significantly positive across all
the tail-heaviness measures controlling for any one of
the asymmetry measures. There is also clear support
for a positive effect of tail-heaviness from the individual-
profitability regressions for CbOP (cash flow approach)
and ROE and moderate support from those for OP,
CbOP (balance-sheet approach), and RNOA.

Considering the differences between the simulated
and archival data, we view the above finding from the
archival data as generally corroborating the simula-
tion results of the tail-heaviness effect. Similarly, in
the archival-data analysis, the pooled regression and
the ROE results show strong support for an inverted-
U-shape effect of asymmetry, whereas three of the six
profitability measures provide strong to moderate
support for a U-shape effect, with the remaining two
having no significant effect whatsoever. These results
echo the not-so-consistent effect of asymmetry found
in the simulated-data analysis.

To demonstrate the usefulness of the distributional
shapeanalysis frameworkbeyondprofitability forecasting,
we apply the framework to examine the out-of-sample
forecasting of cash flows from 1990 to 2015 studied
by Nallareddy et al. (2020). We show that the tail-
heaviness, measured by the kurtosis, of the yearly
cash flow distribution across all firms has a positive
effect on the incremental forecasting accuracy of QR,
whereas the asymmetry, measured by the skewness
coefficient, has an inverted-U-shape effect. We also
analyze various subsamples that exclude firms likely
to have contributed to the tail-heaviness and asym-
metry of the cash flow distribution. By confining our
analysis to these subsamples, we expect to see a
somewhat weaker relation between the incremental
forecasting accuracy and the distributional proper-
ties. The subsample findings are largely consistent
with our expectation. All in all, the results of the cash
flow distributional shape analysis for the full sample
and the various subsamples are in line with the earlier
findings for profitability forecasting.
To our knowledge, we are the first to provide large-

sample evidence of the effects of the profitability
distributional shape on the accuracy of QR forecasts
relative to OLS using both simulated and archival
data. Related prior simulation studies were done
20–30 years ago. They primarily focus on the LAD
estimators, rather than out-of-sample forecasts, or
otherwise on the small-sample forecasting perfor-
mance or use a simulation setup that has a maximum
of 1,000 draws repeated for only 20 times (Dielman
1986,Mitra 1987, Dielman andRose 1994). In contrast,
our setup has 2,500 draws repeated for 500 times
for each set of the distribution type and parameter
combinations. Most importantly, none of the prior
studies has considered asymmetry jointly with tail-
heaviness. We examine both aspects of the distribu-
tional shape using two four-parameter distribution
families that allow controlling not only the location
and scale but also the tail and skewness properties
separately. These families are the stable and the in-
verse hyperbolic sine (IHS) distributions (McDonald
and Turley 2011; Nolan 2013, 2019).
In making the contribution above, we develop a

framework of conducting simulated-data and archival-
data analysis of the profitability distributional shape
and its relation to forecasting accuracy under both the
MAFE and MSFE criteria. This includes the use of
various new measures, such as the incremental and
relative forecasting accuracy measures (both the
simulated- and archival-data versions) and the Mean
%Extremes and tail asymmetry measures of tail-
heaviness and asymmetry, respectively (see Section
4 for details). To our knowledge, the use of stable and
IHS distributions for analysis is also new in the ac-
counting literature.
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We are also the first to document the higher ac-
curacy of QR forecasts, compared with OLS fore-
casts, across four new profitability measures and two
traditional measures (including ROE). In contrast, a
recent paper by Evans et al. (2017) focuses on com-
paring model-based forecasts of ROE (both LAD and
OLS) to analysts’ explicit forecasts of ROE. They do
not at the same time examine the profitability distribu-
tional shape’s effects on the accuracy of QR forecasts
nor consider both the MAFE and MSFE criteria.

This study also adds to the debate on the reasons
behind analyst forecast bias (Gu and Wu 2003, Basu
and Markov 2004) by clarifying the roles of earnings
skewness and the assumption of an absolute loss
function (or MAFE minimization objective) for ana-
lysts. An MAFE minimization objective is very plau-
sible, and the distributions of profitability (as a kind
of scaled earnings) indeed are often skewed.3 How-
ever, neither of these is necessary to explain why
analysts are likely to have formulated their forecasts
based on a median rather than a mean forecast (es-
timated with quantile and OLS regressions, respec-
tively). Even when analysts have a quadratic loss
function and the objective is to minimize MSFE, they
can still find it gainful to use a QR forecasting ap-
proach under the circumstances of heavy-tailed dis-
tributions, even without skewness.

2. Related Literature
2.1. Firm Profitability Forecasts
Profitability is a key indicator of company perfor-
mance and is widely used as an input for valuation.
Traditionalmeasures of profitability includeROEand
RNOA. Freeman et al. (1982) show that there is re-
gression toward the mean in ROE and establish that
extreme ROEs are more transitory than moderate
ones. Fama and French (2000) provide evidence that
mean reversion in firm profitability is a robust phe-
nomenon and suggest that changes in profitability
and earnings are to some degree predictable. In a
simple partially adjusted model using U.S. data, they
find an estimated rate of mean reversion around 38%
p.a. Similar results are documented by Allen and
Salim (2005), who report a mean reversion rate of
25% p.a. in the UK market. We follow Fairfield
et al. (2009) in using a forecasting model that cap-
tures the mean-reversion pattern of profitability con-
ditional on the deviation of a firm’s profitability from
the median profitability benchmark (Freeman et al.
1982, Fama and French 2000).

Besides ROE and RNOA, we consider several al-
ternative measures of profitability: GP, OP, and CbOP.
They are the gross profit, operating profit, and cash-
based operating profit, deflated by the total assets
lagged by one year. GP is the sales minus the cost of

goods sold. OP is defined as the gross profit minus
the selling, general, and administrative expenses re-
ported (i.e., the Compustat-adjusted selling, general,
and administrative expenses with the expenditures
on research and development subtracted in order to
undo this adjustment by Compustat). Two versions of
CbOP are obtained by purging accruals from the
operating profit, with the accruals constructed using
the cash flow approach or the Sloan (1996) balance-
sheet approach (see Ball et al. 2016, p. 44). Panel A of
Table 1 summarizes the definitions of the profitability
measures examined in this study, which are consis-
tent with prior literature (Fairfield et al. 2009; Novy-
Marx 2013; Ball et al. 2015, 2016).
The GP, OP, and CbOP have received considerable

attention because of their predictive power in explain-
ing the cross section of stock returns (Novy-Marx 2013;
Ball et al. 2015, 2016; Fama and French 2015, 2016,
2017; Akbas et al. 2017). Novy-Marx (2013) find that
GP can explain most earnings-related cross-sectional
anomalies in stock returns. Ball et al. (2015), however,
show that OP has a much stronger link with stock
returns than GP. The usefulness of OP in explaining
the cross section of stock returns has led to its in-
clusion as a new factor in the latest five-factor asset
pricing model (Fama and French 2015, 2016, 2017).
Adding to the success of OP, Ball et al. (2016) show
that CbOP outperforms OP in predicting the cross
section of stock returns, explaining two anomalies
related to accruals and profitability measures that
include accruals.
The literature above relates the current profitability

to the stock return of the following year. Our interest
in the profitability measures comes from their po-
tential for valuation. Because valuation is forward-
looking in nature, this study focuses on the forecasts
of the measures, rather than their realized cur-
rent levels.

2.2. QR vs. OLS
We propose constructing point forecasts of profit-
ability using QR, as opposed to the common practice
of usingOLS regression.4 Specifically, we focus on the
QR for τ = 0.5 (i.e., the 50th percentile), which is also
referred to as the median regression. This special case
of QR uses the absolute error loss criterion, as op-
posed to the squared-error loss criterion upon which
OLS regression is based. Median regression has the
advantage of being more robust to outliers than OLS
regression (Cameron and Trivedi 2005).
Similarly, QR is a more robust alternative for ac-

commodating dependent variables with skewed dis-
tributions (Olsen et al. 2012). It is well-documented
that firm earnings are skewed (Basu 1997, Givoly
and Hayn 2000, Konstantinidi and Pope 2016).
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Table 1. Variable Definitions

Panel A: Forecasting analysis

Variable (USD million) Description Computation / WRDS mnemonic

OPINC Operating income after depreciation OIADP
NI Income before extraordinary items − available for

common equity
IBCOM

TA Total assets AT
NOA† Net operating assets Common stock (CEQ) + Preferred stock (PSTK) + Long-

term debt (DLTT) + Debt in current liabilities (DLC) +
Minority interest (MIB) – Cash and short-term
investments (CHE)

BV Common/ordinary shareholder’s equity CEQ
SALES Sales/turnover (net) SALE
GP Gross profitability [Sales (SALE) − Cost of goods sold (COGS)] scaled by

Total assets (AT) lagged by one year
OP† Operating profitability [Gross profit (SALE − COGS) − Selling, general, and

administrative expenses reported (XSGA − XRD)]
scaled by Total assets (AT) lagged by one year

CbOP_BS† Cash-based operating profitability (balance-sheet
approach)

[Operating profit (SALE − COGS − (XSGA -XRD)) −
Δ(Accounts receivable (RECT)) −
Δ(Inventory (INVT)) − Δ(Prepaid expenses (XPP)) +
Δ(Deferred revenue (DRC + DRLT)) + Δ(Trade
accounts payable (AP)) + Δ(Accrued
expenses (XACC))] scaled by Total assets (AT) lagged
by one year

CbOP_CF† Cash-based operating profitability (cash flow
approach)

[Operating profit (SALE − COGS − (XSGA − XRD)) +
Decrease in accounts receivable (RECCH) + Decrease
in inventory (INVCH) + Increase in accounts payable
and accrued liabilities (APALCH)] scaled by Total
assets (AT) lagged by one year

RNOA Return on net operating assets OPINCt/(0.5*(NOAt +NOAt−1))
ROE Return on equity NIt/(0.5*(BVt + BVt−1))
GSL Growth in sales (SALESt − SALESt−1)/SALESt−1

Panel B: Simulated-data and archival-data distributional shape analyses

Variable Description Computation

sd(Profit.)† Standard deviation of the sample distribution of profitability
Mean%Extremes Mean percentage in extremes (in percentage points) 100 × [F(ExtremeL) + 1 − F(ExtremeR)]/2

where F is the cumulative relative frequency
distribution of the sample profitability distribution
under consideration, ExtremeL = median(x) – 4.5
sd(x), and ExtremeR = median(x) + 4.5 sd(x)

Kurtosis† Moment coefficient of kurtosis −∑i[xi −mean(x)]4/nsd(x)4
Tail asymmetry‡ Tail asymmetry [1 − F(TailR)] − F(TailL),

where TailL = median(x) − 2.136 sd(x) and TailR =
median(x) + 2.136 sd(x) are where the left and right
“tails” begin (Taleb 2017, 2018)

Mean-less-median‡ Pearson second skewness coefficient 3[mean(x) – median(x)]/sd(x)
Skewness coefficient‡ Adjusted Fisher-Pearson standardized moment

coefficient of skewness
−∑i[xi −mean(x)]3/nsd(x)3

Simulated-data analysis
pct.QR.Prevail Percentage of the times where QR prevails underMAFE To determine whether QR prevails in an experiment

under MAFE, compute the FIs for the 2,500 draws of
next-period profitability in the experiment like in the
forecasting analysis reported in Table 3. Then
perform a statistical test to see if the mean FI (median
FI) is positive at the 0.01 significance level using the
t-test (Wilcoxon signed-rank test). Count the results
over the 500 experiments of a given distribution type
and parameter combination to obtain the measure.
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This makes the mean estimation by OLS regression
less appropriate for capturing the central tendency of
the earnings distribution.

Our analyses show that, although both tail-heaviness
(reflecting outliers in a sample) and asymmetry (what
skewness tries tomeasure)haveeffects on theaccuracyof
QR profitability forecasts, the former’s effect is much
more consistent than the latter across the different
settings examined.

3. Forecasting Analysis
3.1. Research Design
Consistent with prior studies such as Fairfield et al.
(2009) and Li and Mohanram (2014), we construct the
profitability forecast for each firm-year in two steps.
First, we estimate in-sample a forecasting model on a
rolling basis using the data of all the firms available in
the previous 10 years. For example, to forecast the
profitability of a firm for year T, we first estimate the
coefficients of a forecasting model using the data of all
the firms available from year T − 10 to year T − 1. Next,
we apply the estimated coefficients from the in-sample
regression to the current-year data of a firm to obtain the
one-year-ahead profitability forecast of the firm.

The first forecasting approach considered by us
uses the following forecasting model based on the
economy-wide OLS regression specification studied in
Fairfield et al. (2009):

xi,t � αT + βTxi,t−1 + γTDi,t×xi,t−1 +λTPREDGSLi,t + ui,t,

(1)

where t = T − 10, . . ., T − 1. The dependent variable xi,t,
indexed by firm i and year t, stands for one of the

profitability measures considered: GP, OP, balance-
sheet approach CbOP, cash flow approach CbOP,
RNOA, andROE.We includeDi,t as a dummyvariable
equal to one if, in year t − 1, the profitability of firm i is
below the threshold set at the median profitability of
all observationsavailable in the 10years for the in-sample
estimation and equal to zero otherwise. PREDGSLi,t is
the predicted growth in sales, which is found to be
useful for profitability forecasting (Fairfield et al.
2009). ui,t is the error term. The model parameters
αT, βT, γT, and λT are indexed by year T to highlight
that they are estimated for each year T using data
available in the previous 10 years.
To construct PREDGSL, we use the following sim-

ple first-order autoregressive model estimated by
OLS regression on an industry-specific basis:

gi,t � µj,T + υj,Tgi,t−1 + εi,t, (2)

where gi,t is the growth in sales of firm i in year t, εi,t is
the error term, and t = T − 10, . . ., T − 1. The model
parameters µj,T and υj,T are indexed by industry j and
year T to highlight that the estimation is done on an
industry-specific basis and for each year T using the
previous 10 years of data. The PREDGSLi,T for each
firm-year (i,T) is set to the predicted value mj,T +
nj,Tgi,T−1, where mj,T and nj,T are the estimated coef-
ficients of the model parameters µj,T and υj,T. We
constructPREDGSL byOLS regression on an industry-
specific basis since Fairfield et al. (2009) find that sales
growth forecasts are more accurate when constructed
this way, rather than on an economy-wide basis.5 We
classify industries based on the first-digit standard

Table 1. (Continued)

Panel B: Simulated-data and archival-data distributional shape analyses

Variable Description Computation

pct.OLS.Prevail Percentage of the times where OLS prevails under
MSFE

Similar to the above but the FIs are redefined as the
difference from the SFE of the QR forecast minus that
of the OLS.

IncrAccur Incremental forecasting accuracy (simulated-data
version)

pct.QR.Prevail − pct.OLS.Prevail

RelAccur Relative forecasting accuracy (simulated-data version) log(pct.QR.Prevail) – log(pct.OLS.Prevail), where
pct.QR.Prevail and pct.OLS.Prevail are set to 0.001
whenever they have a zero value

Archival-data analysis:
fir.QR.Prevail Forecast improvement ratio of QR under MAFE mean(AFEOLS)/mean(AFEQR)
fir.OLS.Prevail Forecast improvement ratio of OLS under RMSFE [mean(SFEQR)/mean(SFEOLS)]1/2
IncrAccur Incremental forecasting accuracy (archival-data

version)
fir.QR.Prevail − fir.OLS.Prevail

RelAccur Relative forecasting accuracy (archival-data version) log( fir.QR.Prevail) − log( fir.OLS.Prevail)
Note. If the data items from balance sheet accounts and the data items for preferred stock, long-term debt, debt in current liabilities, minority
interest, cash and short-term investments, selling, general, and administrative expenses, research and development expenses, decrease in
accounts receivable, decrease in inventory, and increase in accounts payable and accrued liabilities are not available, they are assumed to equal
zero.

†In log value when used in regression analysis; ‡in cube-root value when used in regression analysis.
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industry classification (SIC). Schröder and Yim (2018)
find that a broad industry classification like this better
balances the bias frommodelmisspecification and the
sample size for industry-specific estimation.

Our second forecasting approach, economy-wide QR,
uses the same model as specified in Equation (1)
except that the parameters (αT, βT, γT, λT) are esti-
mated byQR for τ= 0.5 (i.e., bymedian regression). In
general, QR estimates are obtained byminimizing the
loss function ρτ(u) on the error term u as illustrated in
Figure 1 in the online appendix. For τ = 0.5, the loss
function becomes symmetric and equals |u|. The QR
estimates for this case are conditional median esti-
mates. In our context, the estimated coefficients are
given by

argmin
(αT , βT , γT , λT)

∑
i,t
|xi,t − (

αT + βTxi,t−1 + γTDi,t × xi,t−1

+λTPREDGSLi,t
)|. (3)

Following prior research such as Li et al. (2014) and
Fairfield et al. (2009), we use the absolute forecast error
(AFE) to measure the accuracy of a forecasting approach.
Specifically, the AFE of forecasting approach A for a firm-
year (i,T) is defined as the absolute difference between
the actual profitability xi,T and the profitability forecast
EA[xi,T] constructed with forecasting approach A:

AFEA(i,T) � |xi,T − EA[xi,T]|. (4)

For example, the profitability forecast constructed
with the first approach (i.e., economy-wide OLS) is

Eew_OLS[xi,T] � aT + bTxi,T−1 + cTDi,T × xi,T−1
+ lTPREDGSLi,T, (5)

where (aT, bT, cT, lT) are the economy-wide OLS es-
timates of the model parameters (αT, βT, γT, λT). Be-
cause the actual profitability is not part of the data
used to construct the profitability forecast, the as-
sessment by the AFE is said to be out-of-sample.

Like prior research, we compute the forecast im-
provement (FI) of an approach (say, A) over another
(say, B) for a firm-year (i,T) to compare the accuracy of
the two forecasting approaches. This is defined as the
difference in the AFE between the forecasts from the
two approaches:

FIA,B(i,T) � AFEB(i,T) − AFEA(i,T). (6)

The FI would be positive if approach A has a lower
AFE than approach B. To conclude on which of the
two approaches is more accurate, we perform tests on
the mean as well as the median FI over all firm-years.
Consistent with the framework of comparing pre-
dictive accuracy in Diebold and Mariano (1995), the
test on the mean FI is a regression-based t-test using
robust standard errors controlling for two-way clus-
tering by firm and year. The test on the median FI is
the Wilcoxon signed-rank test.

3.2. Sample Selection
Profitability forecasts for the forecasting analysis are
constructed for the period from 1989 to 2018 because
some measures require data from the cash flow state-
ments available only from 1987 onward. We use data
available in the previous 10 years to construct the
profitability forecasts for a year. As the PREDGSL
variable in the forecasting models requires 10 earlier
years of data to construct, the profitability forecasts
for 1989 are constructed with data from as far back
as 1969.6

We obtain accounting data of U.S. firms from the
Compustat North America annual fundamentals file
on Wharton Research Data Services (WRDS). Only
observations with identifiable SIC codes and data
available for computing the profitabilitymeasures are
retained.7 We exclude financial and utility firms (SIC
from 6000 to 6799 or from 4900 to 4949) because they
are highly regulated. In addition, the U.S. Postal
Service (SIC 4311) and public administration (SIC
9000 or above) are excluded because of their spe-
cial nature.8

Like Fairfield et al. (2009) and Schröder and Yim
(2018), we apply a number of filters. To reduce the
influence of outliers, we exclude observations with
the profitability measure exceeding one in absolute
value from the analysis of that measure. To mitigate
the effect of a small denominator on the profitability
or sales growth measures, observations with lagged
total assets, average net operating assets, or lagged
sales below USD 10 million or average book value of
equity below USD 1 million are excluded from the
analysis of the measure under consideration. To fur-
ther mitigate the effect of mergers and acquisitions on
the relation between current-year and lagged vari-
ables, we exclude observations with growth in total
assets, net operating assets, sales, or book value of
equity exceeding 100%.
For the in-sample estimation of the forecasting

models, we trim all continuous-value dependent and
predictor variables to the 1st and 99th percentiles. To
avoid any bias in assessing the forecast accuracy out-
of-sample, there is no such trimming in the data upon
which the estimated coefficients are applied to obtain
the forecasts. Given the limited data availability in the
early years of our sample period, we require at least
100 firm-year observations in the in-sample estima-
tion step to avoid unreliable estimation.
Panel A of Table 2 summarizes the sample selection

procedure for the forecasting analysis. The forecast-
ing models are estimated annually on a rolling basis
using data available in the previous 10 years. The
actual number of observations used in each round
of in-sample estimation can vary depending on the
data availability.
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Panel B of the table presents the descriptive statistics of
the profitability and sales growthmeasures and themain
variables required for constructing the measures. On
average, the OP and the two versions of CbOP are in the
rangeof 12.4%–14.7%, in contrast to the smaller RNOA

and ROE (12.6% and 2.9%, respectively). As GP only has
the cost of goods sold deducted, its average value is much
higher at 35.6%. The mean growth in sales is 9.2%.
A value above three in the kurtosis column indi-

cates that a measure is leptokurtic, that is, has tails

Table 2. Sample Selection and Descriptive Statistics

Panel A: Sample selection

Observations with identifiable SIC codes and data
available for computing the profitability measures

288,318

Less financial and utility firms, U.S. postal service, and
public administration

62,787

Less observations with profitability larger than 1 in
absolute value

3,792

Less observations with small denominators 18,024
Less observations with growth exceeding 100% 8,621
Observations available for the in-sample estimation step

of the forecasting analysis
195,094

Observations available for the in-sample estimation step
for each profitability measure:

GP 163,704
OP 171,528
CbOP_BS 171,493
CbOP_CF 137,026
RNOA 144,829
ROE 169,832

Notes. This panel summarizes the procedure for selecting the firm-year observations available for use in the in-sample estimation step where the
estimated coefficients are obtained to construct the forecast improvements for the period from1989 to 2018. The in-sample estimation step is done
for each year in the period on a rolling basis using data available in the previous 10 years. The step requires the use of the predictor variable
PREDGSL (i.e., the forecast of growth in sales), which needs another 10 earlier years of data to construct. Thus, the data used in the in-sample
estimation step can be from as far back as 1969. Depending on the data availability, the actual number of observations used in each round of in-
sample estimation can vary. A firm-year observation’s SIC code is identifiable if its value is notmissing or otherwisemay be imputed based on the
nonmissing SIC code of the firm in the nearest future year. See Table 1 for the definitions of the profitability measures.

Panel B: Descriptive statistics

Variable Obs. Mean Std. dev. Min. Median Max. Kurtosis
Skewness
coefficient

Gross profit 163,704 833.6 3,785.7 −21,536 66.2 137,106 217.33 12.01
Operating profit 171,528 472.6 2,391.6 −21,913 26.4 95,801 228.94 12.61
Cash-based operating profit (balance-sheet approach) 171,493 468.6 2,471.5 −40,099 23.8 177,172 415.10 14.89
Cash-based operating profit (cash flow approach) 137,026 534.1 2,582.8 −21,874 28.6 92,472 198.80 11.71
OPINC 144,829 293.7 1,518.5 −19,095 18.3 71,230 369.10 14.92
NI 169,832 134.6 1,016.6 −44,574 3.3 59,531 564.51 16.11
TA (lagged) 171,744 2,941.2 14,721.7 10.0 193.0 507,560 259.84 13.64
NOA (average) 144,829 2,000.1 9,575.2 10.0 165.9 314,139 265.07 13.78
BV (average) 169,832 1,109.9 6,067.6 1.0 75.1 280,051 389.91 16.50
SALES (lagged) 168,846 2,501.5 12,352.4 10.0 207.6 496,785 424.29 16.65
GP 163,704 35.6% 25.7% −100.0% 33.3% 100.0% 4.53 −0.21
OP 171,528 14.7% 16.2% −99.9% 14.6% 100.0% 7.83 −0.41
CbOP_BS 171,493 13.6% 16.5% −99.8% 13.9% 100.0% 7.68 −0.46
CbOP_CF 137,026 12.4% 16.8% −99.8% 12.9% 100.0% 7.74 −0.57
RNOA 144,829 12.6% 22.0% −99.9% 12.7% 100.0% 7.54 −0.62
ROE 169,832 2.9% 25.5% −100.0% 8.6% 99.8% 6.10 −1.37
GSL 168,846 9.2% 24.6% −100.0% 7.9% 100.0% 5.48 0.08

Notes. This panel gives an overview of the full sample of firm-year observations available for use in the in-sample estimation step where the
estimated coefficients are obtained to construct the forecast improvements for the period from 1989 to 2018. The observations actually used in the
in-sample estimation regression for each rolling 10-year window are subject to a further top and bottom 1% trimming. Except for the profitability
and growth in sales measures, the descriptive statistics reported are in USDmillion. See Table 1 for the variable definitions. The kurtosis column
reports the sample measure of the moment coefficient of kurtosis, which is nonnegative and has a value of 3 for the Gaussian distribution. The
skewness coefficient column reports the sample measure of the adjusted Fisher-Pearson standardized moment coefficient of skewness, with
negative and positive values representing negative and positive skewness, respectively.
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heavier than the Gaussian distribution (Westfall 2014).
All of the profitability measures are leptokurtic. The
skewness coefficient column reports the adjusted
Fisher-Pearson standardized moment coefficient of
skewness. All the earnings and size measures are
positively skewed (i.e., skewed to the right—with a
longer right tail than the left). With the deflation by
some size measures, all the profitability measures are
negatively skewed.

3.3. Results of the Forecasting Analysis
Table 3 presents the forecasting analysis results com-
paring the alternative approach by economy-wide
QR to the benchmark approach by economy-wide
OLS regression. We obtain strong evidence showing
significantly positive forecast improvements for all the

profitability measures. This holds not only for themean
forecast improvements but also for the median. The
levels of significance are consistently high (all at the
1% level).
We perform a number of additional analyses to

ensure that our results are not sensitive to various
methodological and sample choices and can extend
beyond profitability forecasting. The analyses are
summarized in Appendix A in the online appendix.

4. Distributional Shape Analysis:
Research Design

The purpose of the distributional shape analysis is
to examine whether, as prior research suggests, the
accuracy of QR forecasts relative to OLS forecasts is
related to the distributional shape of profitability
characterized by its tail-heaviness and asymmetry.
We consider both the MAFE and the MSFE criteria in
this examination.
Below, we report the research design of the analysis

based on data collected from simulated experiments.
We introduce two measures of forecasting accuracy
for the simulated data and define different measures
of tail-heaviness and asymmetry. The simulation pro-
cedure is described in Appendix B in the online ap-
pendix. The results of this simulated-data analysis
and the verification of the key findings using archival
data are reported in the next section.

4.1. Forecasting Accuracy Measures
Because profitability with a more asymmetric dis-
tribution or heavier tails is likely to be harder to
forecast, we do not expect QR forecasts to become
more accurate in those situations in an absolute sense.
Instead, we focus on assessing whether QR forecasts
are relatively more accurate than OLS forecasts as the
tail-heaviness and asymmetry change, considering
both the MAFE and MSFE criteria. To do so, we
consider measures that benchmark the forecasting
performance of QR under the MAFE criterion against
that of OLS under MSFE.
To see why we consider such measures, first note

that, when confined to predictions within the training
sample, the OLS’s mean forecast is by design optimal
under the MSFE criterion; similarly, the QR’s median
forecast is by design optimal under the MAFE crite-
rion. For a hold-out test sample, QR forecasts can be
more accurate than OLS forecasts even under the
MSFE criterion, and the other way around under the
MAFE criterion. Nonetheless, due to the ways these
forecasts are designed, we expect them to tend to
prevail in out-of-sample testing under the criteria
they are optimal for in-sample prediction. Suppose
that a forecasting approach performs very competi-
tively even under a criterion unfavorable to it and also

Table 3. Profitability Forecast Improvements of
Economy-Wide QR over Economy-Wide OLS Regression

Value p-value

GP
Mean 0.138% *** 0.000
Median 0.121% *** 0.000
OP
Mean 0.063% *** 0.000
Median 0.096% *** 0.000
CbOP_BS
Mean 0.068% *** 0.000
Median 0.061% *** 0.000
CbOP_CF
Mean 0.071% *** 0.000
Median 0.070% *** 0.000
RNOA
Mean 0.120% *** 0.000
Median 0.193% *** 0.000
ROE
Mean 0.415% *** 0.000
Median 1.492% *** 0.000

Notes. This table reports the profitability forecast improvements of
economy-wide QR (the alternative approach) over economy-
wide OLS regression (the benchmark approach). The forecast
improvement (FI) is measured through a matched-pair comparison
of the absolute forecast errors (AFE) from the two competing
approaches. A positive FImeans theAFE from the benchmark approach
is larger than that from the alternative approach. Both forecasting ap-
proaches use the same set of predictor variables like those in Fairfield
et al. (2009). Regardless of the forecasting approaches, the underlying
predictor variable PREDGSL (i.e., the predicted growth in sales) is
constructed in the same way by industry-specific OLS regression. In-
dustries are defined using the first-digit SIC. Firm-specific forecasts are
obtained in two steps. First, the coefficients of a forecasting model are
estimated for each year from 1989 to 2018 on a rolling basis using data
available in the previous 10 years. Next, the estimated coefficients are
applied on a firm’s data of the previous year to obtain a firm-specific
forecast for the current year. The mean and median FIs of all firm-years
in the sample are reported for different profitability measures (see
Table 1 for the definitions of the measures). The test on the mean FI is a
regression-based t-test using robust standard errors controlling for two-
way clustering by firm and year. The test on the median FI is the
Wilcoxon signed-rank test.

***Statistical significance at the 1% level; **5% level; *10% level.

5217
Tian, Yim, and Newton: Tail Heaviness, Asymmetry, and Profitability Forecasting by Quantile Regression
Management Science, 2021, vol. 67, no. 8, pp. 5209–5233, © 2020 INFORMS



has expectedly superior performance under a crite-
rion favorable to it. An alternative forecasting ap-
proach cannot analogously achieve similarly strong
performance under the two criteria. Then it is rea-
sonable to consider the former forecasting approach
to be relatively more accurate.

More precisely, we look at the statistical test result
on the FIs in each simulated experiment. Then, out of
the 500 experiments for each distribution type and
parameter combination, we count the percentage of
the times a forecasting approach prevails under the
criterion favorable to it. To determine whether QR
prevails in an experiment under the MAFE criterion,
we compute the FIs for the 2,500 draws of next-period
profitability in the experiment like what we do in the
forecasting analysis reported in Table 3. Then we per-
form a statistical test to see if the mean FI is positive at
the 0.01 significance level using the t-test.9 Similarly,
we do this to see whether OLS prevails in an experiment
under the MSFE criterion with the forecast improve-
ments (FIs) redefined as the SFE of the QR forecast mi-
nus that of the OLS. Counting the results over the 500
experiments, we obtain the following measures for each
distribution type and parameter combination:

pct.QR.Prevail � Percentage of the timeswhere
quantile regression prevails
under theMAFE criterion;

pct.OLS.Prevail � Percentage of the timeswhere
OLSprevails under the
MSFE criterion.

We also consider the counterparts of these measures
by replacing the t-test with the Wilcoxon signed-rank
test. This is a test on the median FI. Thus, the coun-
terpart measures are better described as under the
median AFE (MdAFE) and median SFE (MdSFE)
criteria, respectively. Figure 2 in the online appendix
illustrates the empirical cumulative distributions of
the p-value of theWilcoxon (signed-rank) test and the
t-test from the 500 experiments for a moderately
heavy-tailed, highly skewed stable distribution.

We consider two forecasting accuracy measures
that benchmark the performance of QR under the
MAFE criterion against that of OLS under MSFE. The
incremental forecasting accuracy of QR is

IncrAccur � pct.QR.Prevail − pct.OLS.Prevail.

Because pct.OLS.Prevail represents the prevalence of
OLS over QR under theMSFE criterion, the lower this
measure, the more competitive the forecasting per-
formance of QR under this criterion unfavorable to it.
If QR and OLS do similarly well under the criteria
favorable to them, respectively, then IncrAccur should

be close to zero. If IncrAccur increases above zero for
experiments where profitability has heavier tails, this
means QR performs better in forecasting the profit-
ability of that nature relative to OLS.
Besides IncrAccur, we also consider the relative fore-

casting accuracy of QR with a similar interpretation:10

RelAccur � log (pct.QR.Prevail) – log(pct.OLS.Prevail).

This is simply the log ratio of the likelihood that QR
prevails under MAFE to the likelihood that OLS
prevails under MSFE.

4.2. Tail-Heaviness and Asymmetry Measures
Skewness is a measure of distributional asymmetry
(Arnold and Groeneveld 1992). Kurtosis is a measure
of tail extremity, that is, either existing outliers in a
sample or the propensity of a probability distribution
to produce outliers (Westfall 2014). Skewness and
kurtosis are often defined as the third and the fourth
standardized central moments. There are variations
in the exact formulas to use for their sample measures
(Cox 2010). We use the following sample measures of
skewness and kurtosis, which are the b1 and g1 + 3
discussed in Joanes and Gill (1998):

Skewness coefficient � ∑
i
[xi −mean(x)]3/nsd(x)3,

Kurtosis � ∑
i
[xi −mean(x)]4/nsd(x)4,

where n is the number of observations in the sample
and sd(x) is the sample standard deviation. Though
commonly used, these moment-based statistics are
not the only measures of the asymmetry and tails of a
distribution (Groeneveld 1998, Holgersson 2010). We
therefore consider various alternatives to ensure that
our results are robust to multiple measures.
Our second asymmetry measure is the Pearson

second skewness coefficient (Doane and Seward 2011):

Mean-less-median � 3[mean(x) −median(x)]/sd(x).
This is similar to Gu and Wu’s (2003) mean–median
difference of EPS (MNMD) measure, but theirs is
deflated by the lagged stock price.
Tails asymmetry is our third asymmetry measure.

It is a simple indicator of the difference in the rela-
tive frequencies in the “tails” of the sample under
consideration:

Tail asymmetry � [1-F(TailR)] − F(TailL),
where F is the cumulative relative frequency distri-
bution of the sample under consideration and TailL =
median(x) − 2.136 sd(x) and TailR = median(x) + 2.136
sd(x) are where the left and right “tails” begin.
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The literature does not have a universally accepted
definition of the tails of a distribution. We use Taleb’s
definition for its simplicity (Taleb 2017, 2018).11

Considering the skewed and heavy-tailed distribu-
tions in our analysis, we replace the sample mean by
the sample median as a robust estimate of the central
tendency, which is likely to have lower sampling
variability in this context (Myers et al. 2010, Wilcox
and Rousselet 2018).

Our second tail-heaviness measure is the mean
percentage in extremes:

Mean%Extremes � 100× [F(ExtremeL) + 1
− F(ExtremeR)]/2,

whereExtremeL =median(x) – 4.5 sd(x) and ExtremeR =
median(x) + 4.5 sd(x). The measure, in percentage
points, calculates the mean percentage of the sample
falling in the two extreme regions, defined as the
regions outside the median minus and plus four
and a half standard deviations. In our simulated-data
and archival-data regression analysis, an asymmetry
measure is always included as a control variable.
Therefore, the coefficient ofMean%Extremes captures
the effect of heavy tails over and above what could
have been driven by the long left or right tail of a
skewed distribution. We have also considered the
range of four to five standard deviations in defining
the extreme regions, all with very similar results in
our simulated-data regression analysis. Therefore,
we only report the results based on four and a half
standard deviations.12

Panel B of Table 1 summarizes the variable defi-
nitions of the forecasting accuracy and distributional
property measures. Panel A of Table 4 provides the
descriptive statistics of these measures for the sim-
ulated data used in the distributional shape analysis.
The forecasting accuracy measures in the panel are
computed based on theWilcoxon-test- or t-test-based
forecasting performance of the QR andOLS approaches
in every 500 simulated experiments of the 4 × 256
distribution type and parameter combinations. The
measures of the distributional properties are com-
puted based on the 2,500 draws of the simulated
next-period firm profitability to be forecast in each
experiment. Presented in the panel are these mea-
sures mean- or median-aggregated to the distribution
type–parameter combination level.

It is worth a note that, based on the nonparametric
Wilcoxon signed-rank test, OLS prevails under the
MSFE criterion (at the 0.01 significance level) for only
10.2% of the times at maximum. This does not nec-
essarily mean that QR prevails more often under this
criterion. It can simply be that, under the robust
nonparametric test, it is often hard to tell whether one
approach clearly prevails. Because the design of the

simulated experiments is to examine the impact of
asymmetric and heavy-tailed profitability distribu-
tions on the forecasting performance, most of the
parameter combinations yield distributions that OLS
is unlikely to handle well. Therefore, the statistics
reported in the panel should not be confused with
OLS’s typical performance for profitability distribu-
tions close to the Gaussian.
The statistics based on the parametric t-test are quite

different: the percentage of the times OLS prevails under
the MSFE criterion can be as high as 61.2%. This sharp
difference explains why we consider both tests in this
analysis in order to see the full picture.
The mean- and median-aggregated distributional

properties are very similar. In either case, the mean or
median kurtosis in log scale is above the Gaussian
benchmark 1.099, which is consistent with the prof-
itability distributions in the simulated experiments
typically having heavier tails than the Gaussian. In
the simulated experiments, the minimum kurtosis in
log scale at 1.102 is attainedwhen the tail parameter is
close to a level giving the Gaussian as a limiting case
of the simulated distribution.
Nearly all the asymmetry measures have a nonzero

mean and median. This reflects the average outcome
of the randomized samples simulated from population
distributions that are heavy-tailed and skewed. By de-
sign, the parameter combinations used for negatively
skewed distribution types are the mirror image of
those for positively skewed distribution types. But it
is still hard to achieve symmetric realized sample out-
comes when the sampling variability is high owing
to population distributions that have a high or even
infinite variance (e.g., the stable distribution with the
α-parameter in a range strictly below 2; see Appendix B
in the online appendix for further details).

5. Distributional Shape Analysis:
Regression Results

5.1. Regression Analysis of Simulated Data
We use the following regression model to relate the
distributional shape of profitability to the forecasting
accuracy of QR:

DepVar � α0 + α1 Heavy + α2 Asymmetric
+ α3 Asymmetric2 + α4 sd(Profit.)
+Distribution type fixed effects + ε, (11)

where
• DepVar = IncrAccur or RelAccur;
• Heavy = Mean%Extremes or kurtosis;
• Asymmetric = Tails asymmetry, mean-less-median,

or skewness coefficient;
• sd(Profit.) = Standard deviation of the sample

distribution of profitability;
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Table 4. Descriptive Statistics of the Simulated and Archival Data for the Distributional Shape Analysis

Panel A: Simulated data

Variable Mean Std. dev. Min. Median Max.

Forecasting accuracy (Wilcoxon-test based):
pct.QR.Prevail 0.319 0.313 0.012 0.185 0.972
pct.OLS.Prevail 0.033 0.026 0.000 0.026 0.102
IncrAccur 0.286 0.334 −0.074 0.154 0.972
RelAccur 2.148 2.333 −1.792 2.001 6.879
Forecasting accuracy (t-test based):
pct.QR.Prevail 0.338 0.323 0.014 0.198 0.982
pct.OLS.Prevail 0.175 0.139 0.000 0.124 0.612
IncrAccur 0.164 0.251 −0.106 0.057 0.924
RelAccur 0.518 1.566 −1.792 0.342 6.820
Distributional properties (mean-aggregated):
Mean%Extremes 0.136 0.102 0.000 0.137 0.319
Kurtosis† 3.884 1.897 1.104 4.294 7.247
Tail asymmetry‡ −0.002 0.193 −0.279 −0.046 0.278
Mean-less-median‡ −0.006 0.464 −0.684 −0.114 0.683
Skewness coefficient‡ −0.097 1.253 −2.451 −0.315 2.275
sd(Profit.)† 0.798 1.325 0.224 0.264 8.127
Distributional properties (median-aggregated):
Mean%Extremes 0.135 0.104 0.000 0.140 0.320
Kurtosis† 3.092 1.635 1.102 3.142 7.204
Tail asymmetry‡ −0.003 0.194 −0.279 0.000 0.278
Mean-less-median‡ −0.009 0.467 −0.685 −0.143 0.686
Skewness coefficient‡ −0.110 1.107 −2.320 −0.313 2.162
sd(Profit.)† 0.530 0.719 0.198 0.242 4.702

Notes. This panel gives an overview of the 6,751 observations of profitability-industry-years used in the archival-data distributional shape
analysis. The sample is constructed from the firm-year observations used in the out-of-sample tests reported in Table 3. Aminimumof 20 firms in
each industry-year is required to avoid unreliable estimates of the profitability distributional properties. The industry classification is based on
two-digit SIC. The forecasting accuracy measures are computed for each profitability measure using the forecasting performance of the QR and
OLS approaches for eachfirm aggregated across all firms in an industry-year based on theMAFE andRMSFE criteria, respectively. Themeasures
of the distributional properties are computed for each profitability measure based on all firms in an industry-year. See panel B of Table 1 for
details of the variable definitions.

†Measures in log value; ‡measures in cube-root value.

Panel B: Archival data

Variable Mean Std. dev. Min. Median Max.

Size of industry-year 82.2 82.7 20 50 631
Forecasting accuracy:
fir.QR.Prevail 1.027 0.067 0.817 1.016 2.130
fir.OLS.Prevail 0.996 0.043 0.571 1.000 1.246
IncrAccur 0.031 0.104 −0.422 0.018 1.559
RelAccur 0.298 1.003 −4.137 0.181 13.167
Distributional properties:
Mean%Extremes 0.076 0.236 0.000 0.000 2.174
Kurtosis† 1.552 0.475 0.274 1.521 3.583
Tail asymmetry‡ 0.011 0.302 −0.523 0.000 0.497
Mean-less-median‡ 0.064 0.671 −1.142 0.378 1.129
Skewness coefficient‡ −0.034 0.896 −1.741 −0.126 1.568
sd(Profit.)† −1.978 0.386 −3.238 −1.964 −0.824

Notes. This panel gives an overview of the 1,024 observations used in the simulated-data distributional shape analysis based on data from
512,000 simulated experiments (500 experiments for each set of the distribution type and parameter combination over 4 distribution types and
256 parameter combinations). The forecasting accuracy measures are computed based on the Wilcoxon-test- or t-test-based forecasting per-
formance of the QR and OLS approaches in each group of 500 simulated experiments of the 4 × 256 sets of the distribution type and parameter
combination. Themeasures of the distributional properties are computed based on the 2,500 draws of the simulated next-period firm profitability
to be forecast in each simulated experiment. Presented in this panel are these measures mean- or median-aggregated to the distribution
type–parameter combination level. See panel B of Table 1 for the definitions of the forecasting accuracy and distributional property measures.

†Variables in log value; ‡variables in cube-root value.
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• Distribution type fixed effects = Effects of whether
the distribution is positively or negatively skewed
stable or IHS;

• ε = Error term.
Driven by goodness-of-fit considerations, the log

values of kurtosis and sd(Profit.) and the cube-root
values of the Asymmetric measures are used in the
regression. The cube-root transformation works much
like the log transformation but accepts and maintains
negative values (Cox 2011). We control for sd(Profit.)
because not all the measures involve the deflation by
the sample standard deviation and, even when some
do, deflation alone is not likely to remove the influ-
ence completely.

Table 5 show the results of the simulated-data re-
gression analysis at the mean-aggregated level for the
pooled regressions. Without an exception, the effect
of tail-heaviness on the incremental forecasting ac-
curacy of QR is significantly positive across all the
combinations ofHeavy and Asymmetricmeasures and
for both the Wilcoxon-test- and t-test-based defini-
tions of IncrAccur.

For asymmetry, we focus on the shape of its effect
on the incremental forecasting accuracy of QR. The
effect has a U-shape with the minimum around −α2/
2α3 if the coefficient α3 of the Asymmetric2 term is
significantly positive (an inverted-U-shape if signif-
icantly negative). The results in the table show that
the shape of the asymmetry effect is consistently a
U-shape throughout.

The shape of the asymmetry effect is not as con-
sistent throughout Table 6, where the results for the
relative forecasting accuracy of QR for the pooled
regressions are presented. However, it is still highly
consistent when confining to only the Wilcoxon-test-
or only the t-test-based results. The asymmetry effect
has a U-shape in the former but an inverted-U-shape
in the latter. This mixed result is in sharp contrast to
the highly consistent significantly positive effect of
tail-heaviness in Table 6.

The individual-distribution regression results are
presented in Tables A1 andA2 in the online appendix.
Regardless of the distributions (stable or IHS) and
measures (IncrAccur or RelAccur), the results are
highly consistent with the corresponding pooled-
regression results. In an untabulated analysis, we
have examined also the median-aggregated versions
of the pooled and individual-distribution regressions,
and the results are very similar.

The findings above continue to hold in the regression
analysis at the experimental level, where the IncrAccur
or RelAccur is regressed on the experimental-level
profitability distributional properties with robust
standard errors adjusted for clustering by distri-
bution type–parameter combination. The effect of
tail-heaviness continues to be significantly positive

without an exception. The shape of the asymmetry
effect again is typically opposite for the Wilcoxon-
test- vs. the t-test-defined RelAccur. In the interest of
space, we do not tabulate these highly similar results.
In Table A3 (in the online appendix), we report

the regression results of the building blocks,
pct.QR.Prevail and pct.OLS.Prevail, of the incremental
and relative forecasting accuracy measures defined
based on the Wilcoxon (signed-rank) test. Panel A of
the table shows the findings for the pooled sample of
the stable and the IHS distributions. The breakdown
of IncrAccur or RelAccur into its building blocks re-
veals that pct.OLS.Prevail (i.e., the percentage of the
times where OLS prevails under the MSFE criterion)
always decreases with the tail-heaviness measures.
By contrast, pct.QR.Prevail (i.e., the percentage of the
times where QR prevails under the MAFE criterion)
always increases with the tail-heaviness measures.
This supports the notion that heavy-tailed profit-
ability distributions are driving the superior fore-
casting performance of QR under the MAFE criterion
reported in Table 3.
Table A4 (in the online appendix) presents the re-

gression results of pct.QR.Prevail and pct.OLS.Prevail
defined based on the t-test. Panel A of the table again
shows that pct.QR.Prevail increases with the tail-
heavinessmeasures, whereas pct.OLS.Prevail decreases
with the measures (except for the insignificant find-
ings when Asymmetric is tail asymmetry). Therefore,
the effect of tail-heaviness on the building blocks
of the incremental and relative forecasting accuracy
measures is highly consistent, regardless of the sta-
tistical test used to define the measures.
The finding of a U-shape effect of asymmetry on

pct.QR.Prevail is also highly consistent among the
regression results of the Wilcoxon-test- or the t-test-
basedmeasure.However, the shape of the asymmetry
effect on pct.OLS.Prevail is opposite between the re-
gression results reported in panels A of Tables A3 and
A4 (inverted-U-shape in the former and U-shape in
the latter). The difference again explains whywe need
both tests to see the not-so-robust effect of asymmetry
and the highly robust effect of tail-heaviness.
Panels B and C of Tables A3 and A4 show the

findings for the stable and the IHS distribution sep-
arately, which are very similar to those for the pooled
sample discussed above.

5.2. Regression Analysis of Archival Data
In the archival data used for the distributional shape
analysis, distributional properties are estimated for
each profitability measure using all firms in each
industry-year. The industry classification is based on
the two-digit SIC. The firm-year observations used to
construct the industry-year observations come from
the sample for out-of-sample testing reported inTable 3.
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A minimum of 20 firms in each industry-year is re-
quired to avoid unreliable estimates of the distribu-
tional properties.

The regression model is

DepVar � α0 + α1 Heavy + α2 Asymmetric

+ α3 Asymmetric2 + α4 sd(Profit.)
+ Profitability fixed effects (only
for the pooled all-profitability regression)

+ First-digit SIC industry fixed effects
+ Year fixed effects + ε, (12)

where the Heavy and Asymmetric measures are the
same set as in the simulated-data analysis. The two
forecastingmeasures forDepVar are still referred to as
IncrAccur and RelAccur. However, they are redefined
as follows for the archival-data analysis:
IncrAccur � fir.QR.Prevail − fir.OLS.Prevail,

RelAccur � log
(
fir.QR.Prevail

) − log
(
fir.OLS.Prevail

)
,

where fir.QR.Prevail = mean(AFEOLS)/mean(AFEQR)
is the forecast improvement ratio (FIR) of QR under the
MAFE criterion, and fir.OLS.Prevail = [mean(SFEQR)/
mean(SFEOLS)]

1/2 is the forecast improvement ratio
of OLS under the root mean squared forecast error
(RMSFE) criterion. The mean(∙) operation in the fore-
cast improvement ratios is taken over all firms in an
industry-year. We use the RMSFE criteria, which has
the same ranking as MSFE, to define fir.OLS.Prevail so
that its scale is comparable to fir.QR.Prevail, and
hence, the meaning of IncrAccur as their difference is
more intuitive.

Industry and year fixed effects are included in the
regression. Robust standard errors adjusted for clus-
tering by profitability-industry-year are reported
in parentheses in the result tables. Because the
observations for each profitability measure are at
the industry-year level with the industry classifi-
cation based on the two-digit SIC, we use the
broader first-digit SIC to define the industry for the
industry fixed effects and robust standard errors.

Panel B of Table 4 provides the descriptive statistics
of the archival data used for the distributional shape
analysis. The mean and median sizes of each industry-
year are 82.7 and 50 firms, respectively. This variable
provides the weights for the size-weighted regressions
reported in Table 7, in addition to the unweighted
regressions.

RMSFE should be an evaluation criterion more
favorable to OLS. However, the mean fir.OLS.Prevail
is below one (0.996), whereas the mean fir.QR.Prevail
is above one (1.027). This necessarily results in a
positive mean IncrAccur, suggesting that on average
the forecasting accuracy of QR is higher relative to
OLS, just like in the simulated data.

The mean and median of the asymmetry measures
are nonzero, also like in the simulated data. Note that
the kurtosis reported in the panel and used in the
regressions is in log scale. Therefore, its median at
1.521 is equivalent to a value of 4.577 in the original
scale. This suggests that over half of the industry-years
have profitability distributions with tails heavier than
the Gaussian. However, with a minimum at 0.274 for
kurtosis in log scale, there should be cases with tails
lighter than the Gaussian, which do not exist at all in
the simulated data. This could be a reason for ex-
pecting results somewhat different from the simulated-
data analysis.
Table 7 shows the results of the archival-data

analysis at the industry-year level for IncrAccur as
the dependent variable. In panel A where the results
for the pooled all-profitability regressions are re-
ported, the effect of tail-heaviness on the incremental
forecasting accuracy of QR is significantly positive
across all the combinations of Heavy and Asymmetric
measures, aswell as for both the unweighted and size-
weighted regressions. This highly consistent result
also appears in panel E for the individual-profitability
regressions for CbOP_CF (except for the Mean%Ex-
tremes-Skewness coefficient combination) and more
or less so in panel G for ROE (with 9 of the 12 esti-
mated coefficients being significantly positive). There
is also moderate support for this tail-heaviness effect
from the regressions for OP, CbOP_BS, and RNOA in
panels C, D, and F, respectively (with five to seven of
the estimated coefficients being significantly posi-
tive). Across all the regressions, whenever the esti-
mated coefficients for the tail-heaviness effect are
significant, they have a positive sign (except for the
kurtosis-skewness coefficient combination in the un-
weighted and size-weighted regressions for GP). Con-
sidering the differences between the simulated and ar-
chival data, we view the tail-heaviness effect found here
as generally corroborating the simulation results of the
tail-heaviness effect.
InTableA5 (provided in theonlineappendix),wereport

the regression results of thebuildingblocksof the archival-
data incremental and relative forecasting accuracy
measures. The results show that, without an exception,
fir.OLS.Prevail = [mean(SFEQR)/mean(SFEOLS)]

1/2

decreases with the tail-heaviness measures, whereas
fir.QR.Prevail = mean(AFEOLS)/mean(AFEQR) in-
creases with the measures. This finding confirms that
the heavy tails of profitability distribution are a driver
behind the superior forecastingperformance ofQRunder
theMAFE criterion reported in Table 3. Figure 3, (a)–(c)
in the online appendix depict the archival-data-based
finding of the tail-heaviness effect (illustrated in terms
of kurtosis) on the incremental forecasting accuracy
IncrAccur of QR and its components fir.QR.Prevail and
fir.OLS.Prevail.
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The pooled regressions in panel A of Table 7 sup-
port the notion of an inverted-U-shape asymmetry
effect (with 10 of the 12 estimated coefficients of
the Asymmetric2 term being significantly negative).
However, this finding appears to be driven by the
result for ROE in panel G. Across all the regressions
for the other profitability measures, either there is
no significant asymmetry effect (for CbOP_BS and
CbOP_CF in panels D and E) or any significant
finding is consistent with a U-shape asymmetry effect
(for GP, OP, and RNOA in panels B, C, and F).

The untabulated results for RelAccur as the de-
pendent variable are very similar. Nearly all of the
regressions for GP andRNOAand half of those for OP
have a significantly positive coefficient of the Asym-
metric2 term, whereas the regressions for CbOP_BS
and CbOP_CF show no significant effect of asym-
metry. As in Table 7, the inverted-U-shape asym-
metry effect found in the pooled regressions appears
to be driven by the regression results for ROE. Ad-
ditionally, the pooled and individual regressions for
the profitability measures show consistent support
for a positive tail-heaviness effect. Overall, the evi-
dence from the archival-data analysis confirms the
key insight about the tail-heaviness effect from
the simulated-data analysis and highlights again the
mostly significant but not entirely consistent effect
of asymmetry (i.e., can be U-shape or inverted-
U-shape).

6. Application to Cash Flow Forecasting
To demonstrate the usefulness of our analysis
framework beyond profitability forecasting, we
apply the framework to examine the out-of-sample
forecasting of cash flows studied by Nallareddy et al.
(2020). They find that, under the MSFE criterion and
using the OLS approach, the first-order autoregressive
model (i.e.,using laggedcashflows to forecast cashflows)
is more accurate than the forecasting-by-lagged-earnings
model (i.e., using lagged earnings to forecast cash flows).

Following Nallareddy et al. (2020), we examine the
out-of-sample forecasts of cash flows for the period
from 1990 to 2015.We are interested to relate together
the annual time series of the cash flow distributional
properties and the incremental forecasting accuracy
of the QR approach against OLS. Prior research
mentions that the cash flow distribution has changed
significantly over time (Gassen 2018). In an untabu-
lated analysis, we find a moderate upward trend in
the yearly variation in the tail-heaviness of the cash
flow distribution across all firms: an OLS regression
of the tail-heaviness, measured as kurtosis in log
scale, on the year gives a slope coefficient of 0.027
(with a p-value of 0.053).

We compare the QR approach to estimating the first-
order autoregressive cash flow forecasting model

against the OLS approach. Note that the forecast-
ing-by-lagged-earnings model does not fit into the
simple/extended first-order autoregressive structure
upon which our analysis framework was developed.
Therefore, we do not expect that the QR approach
would prevail for this second model or that the
(perhaps nonpositive) incremental forecasting accu-
racy would be associated with the distributional prop-
erties of cash flows. Nonetheless, we are interested to
know whether to some extent the key insights of our
framework might hold after controlling for the cross-
sectional variability of the lagged earnings in the dis-
tributional shape analysis. Controlling for the variability
of this only predictor variable of the second model is
important because the variability is likely to adversely
impact the forecasting accuracy of both the QR and
the OLS approach perhaps unevenly.
We obtain the data of U.S. firms from the Com-

pustat North America annual fundamentals file on
WRDS. Consistent with Nallareddy et al. (2020), cash
flows (CF) are measured as cash flows from operations
adjusted for extraordinary items and discontinued op-
erations (derived from cash flow statements). Earnings
(EARN) are defined as income before extraordinary
items and discontinued operations. Both variables are
deflated by average total assets. Following them, we
exclude observations meeting any of the following
criteria: (i) sales of less than $10million; (ii) share price
of less than $1; (iii) SIC code in the range of 6000–6999
(i.e., in the financial services sector).13 This would
yield a sample of 110,597 firm-year observations if we
also followed them to winsorize all continuous in-
dependent variables of the full sample at the 1% and
99% levels. Instead, we mitigate the effects of outliers
only at the in-sample estimation stage to finalize the
sample used for the regression with a given rolling
window of data (e.g., the most recent two years of
available data as in Nallareddy et al. (2020)). This
alternative approach avoids a look-ahead bias. We
truncate the top and the bottom one percent of all
continuous variables used in the in-sample regres-
sion, rather thanwinsorize them, to be consistentwith
the literature our profitability forecasting analysis
builds upon. This prevents the clustering of obser-
vations around the 1% and 99% levels. To avoid a
look-ahead bias, there is no truncation on the sample
of the prior-year data for constructing the out-of-
sample forecasts and on the sample of the forecasts
constructed.
Figure 4 in the online appendix depicts the annual

time series of the incremental forecasting accuracy,
its forecast improvement ratio components, and the
distributional properties of cash flows. The temporal
variation of the incremental forecasting accuracy
(IncrAccur) of the QR approach (against OLS) for the
first-order autoregressive cash flow model is shown
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in the first chart of the figure. The components of
IncrAccur, namely, the forecast improvement ratio of
QR under the MAFE criterion (fir.QR.Prevail) and the
forecast improvement ratio of OLS under the RMSFE
criterion (fir.OLS.Prevail), are depicted in the second
and the third charts of the figure, respectively. Note
that fir.QR.Prevail is above one for nearly all the years,
whereas fir.OLS.Prevail is more evenly spread above
and below one. In other words, the QR approach
clearly prevails under theMAFE criterion but the OLS
approach on average cannot prevail even under the
RMSFE criterion more favorable to it. Consequently,
IncrAccur is positive for most of the years.

The fourth chart in the figure depicts the kurtosis of
the cash flow distribution, which shows a moderate
upward trend. The skewness coefficient of the dis-
tribution depicted in the fifth chart indicates that,
except for a few years, the cash flow distribution is
negatively skewed. The last chart shows the temporal
variation of the standard deviation of the cash flow
distribution. The standard deviation measures the
cross-sectional variability of the cash flows in a year.
This is likely to affect the forecasting accuracy of
both the QR and the OLS approach. It is included in
the distributional shape analysis regression to help
identify the incremental effects of the tail-heaviness
and the asymmetry, measured by the kurtosis and the
skewness coefficient, respectively.

The first two columns in panel A of Table 8 present
the results of the distributional shape analysis for the
first-order autoregressive cash flow model. They are
based on in-sample estimationwith a two-year rolling
window as in Nallareddy et al. (2020). The dependent
variable is IncrAccur. The first column in the panel
shows a positivemean IncrAccur at the 5% significance
level. The second column shows that this positive
incremental forecasting accuracy of the QR approach
is partly driven by the tail-heaviness of the cash flow
distribution (a positive coefficient for Heavy at the
5% significance level). The significantly negative co-
efficient of the Asymmetric2 term means that the
asymmetry has an inverted-U-shape effect on the
incremental forecasting accuracy. These findings are
consistent with the pooled regression archival-data
results of our analysis for profitability forecasting. To
assess the robustness of these findings, we also per-
form the analysis for different in-sample estimation
windows up to 10 years of available data as in our
analysis for profitability forecasting.14 The results are
similar to those for the two-year window case. For
brevity, we only tabulate the results for the 4-year,
7-year, and 10-year cases in columns 4–5 and 7–10 in
the panel.

Column 3 in the panel presents the two-year win-
dow result for the forecasting-by-lagged-earnings
model. The (untabulated) corresponding mean IncrAc-
cur is −0.009 (at the 10% significance level), which
becomes insignificantly different from zero for any
longer window up to 10 years. Column 3 shows that,
by controlling for the standard deviation of the lagged
earnings distribution, the incremental forecasting ac-
curacy of the QR approach is less negative when the
cash flow distribution has heavier tails. The asym-
metry of the cash flow distribution has an inverted-U-
shape effect on IncrAccur even for this model not having
a first-order autoregressive structure. These findings
are robust to widening the in-sample estimation win-
dow to three or four years. For brevity, we tabulate only
the four-year case in column 6 of the panel.
We also analyze various subsamples that exclude

firms likely to have contributed to the tail-heaviness
and asymmetry of the cash flow distribution. By
confining our analysis to these subsamples, we expect
to see a somewhat weaker relation between the in-
cremental forecasting accuracy and the distributional
properties. Intangible-intensive firms are excluded
from the first subsample we consider. Gassen (2018)
points out that “new firms from intangible intensive
industries, in particular from the health sector, appear
to have extremely left skewed cash flow” (Gassen
2018, p. 19). He also notices that, from 2005 to 2014, a
sizable fraction of the negative cash flow firms are based
in the health sector. Many of them tend to be “relatively
small, and invest heavily in in-process research and
development” (Gassen 2018, p. 13). Following him,
we define intangible-intensive firms as the firms in
the health, business equipment, telecommunication,
and chemical sectors of the Fama-French 12-industry
classification.15

The second subsample we examine excludes loss
firms (i.e., EARN < 0) because they are likely to be
associated with negative cash flows, contributing to
the negative skewness of the cash flow distribution.
Smaller firms might also contribute to the cash flow
distribution’s negative skewness. They are excluded
from the third subsample. It seems reasonable to
expect that the firms in the tails of the cash flow
distribution overlap somewhat with the firms in the
tails of the firm size distribution. Excluding these
firms might lighten the tails of the cash flow distri-
bution. We investigate this case in the fourth sub-
sample. Measuring firm size by total assets, we define
smaller firms as those below the first quartile of the
firm size distribution and define “size-tails” firms as
those outside the 12.5th and the 87.5th percentile of
the distribution.
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Table 8. Incremental Forecasting Accuracy and Cash Flow Distributional Shape: QR Forecasting vs. OLS

Panel A: Lagged cash flows or lagged earnings as the predictor variable, with short to long in-sample estimation windows

Window (years) 2 4 7 10
Predictor

CFt−1 CFt−1 EARNt−1 CFt−1 CFt−1 EARNt−1 CFt−1 CFt−1 CFt−1 CFt−1

Intercept 0.009** −0.088** −0.164*** 0.011* −0.100* −0.161*** 0.014** −0.066 0.016*** −0.053
(0.004) (0.038) (0.041) (0.006) (0.049) (0.048) (0.006) (0.048) (0.005) (0.041)

Heavy 0.016** 0.007** 0.022*** 0.011** 0.011*** 0.006*
(0.006) (0.003) (0.005) (0.004) (0.003) (0.003)

Asymmetric −0.001 0.008*** −0.006 0.002 −0.005 −0.004
(0.006) (0.002) (0.006) (0.004) (0.005) (0.005)

Asymmetric2 −0.027** −0.013** −0.026*** −0.013** −0.011** −0.003
(0.011) (0.006) (0.006) (0.005) (0.005) (0.006)

sd(CF) 0.677** 1.715*** 0.62 1.618*** 0.465 0.444
(0.297) (0.418) (0.407) (0.479) (0.422) (0.357)

sd(EARNt−1) −0.315*** −0.343***
(0.028) (0.030)

Observations 26 26 26 26 26 26 26 26 26 26
Adjusted R2 0 0.232 0.743 0 0.23 0.821 0 0.063 0 0.076
Notes. This panel presents the results of the cash flow distributional shape analysis for the full sample of U.S. firms based on out-of-sample
forecasts from 1990 to 2015 (with in-sample estimation data as far back as in 1987). The yearly observations used in this table are constructed from

the firm-year observations used for forecasting cash flows out-of-sample with a rollingwindow of in-sample estimation. Each yearly observation
is based on the distributional properties of cash flows, or lagged earnings, for the cross section of firms in a given year and the incremental
forecasting accuracy of the QR approach (vs. OLS) to forecasting cash flows for this cross section. The forecasting model used for comparing the
QR approach to OLS has the lagged cash flows or the lagged earnings as the only predictor variable (see Nallareddy et al. 2020). The dependent
variable of the distributional shape analysis in this table is the incremental forecasting accuracy IncrAccur computed yearly for a given forecasting
model. IncrAccur is defined as the forecast improvement ratio of QR under the MAFE criterion minus the forecast improvement ratio of OLS
under the RMSFE criterion. The independent variables in this table are: Heavy = kurtosis† of the cash flow distribution of a year; Asymmetric =
skewness coefficient‡ of the cash flow distribution of a year; sd(CF) = standard deviation of the cash flow distribution of a year; sd(EARNt−1) =
standard deviation of the lagged earnings distribution of a year. Cash flows (CF) are defined as net cash flow from operating activities less cash
flow from extraordinary items and discontinued operations (Compustat: OANCF – XIDOC). Earnings (EARN) are defined as income before
extraordinary items and discontinued operations (Compustat: IB). Both variables are deflated by total assets (Compustat: AT) averaged over the
current and the prior years. See Table 1 for the details of the definitions of IncrAccur, kurtosis, and skewness coefficient.

†Variables in log value; ‡in cube-root value; ***statistical significance at the 1% level; **5% level; *10% level.

Panel B: Subsamples for various exclusion criteria (lagged cash flows as the predictor variable and two-year in-sample estimation window)

Subsample excluding
Intangible-intensive

firms Loss firms Smaller firms Size-tails firms

Intercept 0.005** −0.055 0.001 −0.196*** 0.008** −0.098*** 0.009*** −0.047*
(0.002) (0.040) (0.002) (0.055) (0.003) (0.031) (0.003) (0.023)

Heavy 0.018 0.004 0.010** 0.011***
(0.012) (0.014) (0.004) (0.003)

Asymmetric 0.003 0.012** 0.008* 0.0002
(0.007) (0.005) (0.004) (0.005)

Asymmetric2 −0.0005 −0.002 −0.020* −0.017***
(0.010) (0.020) (0.011) (0.005)

sd(CF) 0.162 1.906*** 0.908*** 0.345*
(0.395) (0.604) (0.267) (0.191)

Observations 26 26 26 26 26 26 26 26
Adjusted R2 0 0.036 0 0.114 0 0.429 0 0.117

Notes. This panel presents the results of the cash flow distributional shape analysis for the subsamples excluding the following firms one at a
time: intangible-intensive firms defined as the firms in the health, business equipment, telecommunication, and chemical sectors of the Fama-
French 12-industry classification, loss firms defined as those with negative earnings (EARN < 0), smaller firms defined as those below the first
quartile of the firm size distribution (where firm size is measured by total assets), and size-tails firms defined as those outside the 12.5th and the
87.5th percentile of the firm size distribution. The dependent variable in this table is the incremental forecasting accuracy IncrAccur computed
yearly for the forecasting model with the lagged cash flows as the only predictor variable. See the note below panel A for other details.
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Panel B of Table 8 shows the subsample findings
based on the first-order autoregressive cash flow
modelwith a two-year in-sample estimationwindow.
Compared with the full-sample result (columns 1
and 2 of panel A), the magnitude or statistical sig-
nificance of the mean IncrAccur and of the estimated
coefficients of the Heavy and the Asymmetric2 terms is
generally lower. The few exceptions are the statisti-
cally more significant mean IncrAccur of the same
magnitude in column 7 and the statistically more
significant coefficients of the Heavy and the Asym-
metric2 terms in column 8 (but both coefficients are
lower in magnitude).

All in all, we conclude that the results of the dis-
tributional shape analysis for the cash flow forecasting
models and for the various subsamples are in line with
our earlier findings for profitability forecasting.

7. Conclusion
We document that QR performs better than OLS in
forecasting profitability for a range of profitability
measures under the MAFE criterion. Considering the
MAFE and the MSFE (RMSFE) criteria together, we
also examine how QR’s forecasting performance,
benchmarked against OLS’s, changes with the shape
of the profitability distribution. Specifically, we
perform a distributional shape analysis to relate the
forecasting accuracy of QR against OLS to the tail-
heaviness and asymmetry of profitability distribu-
tion. In the simulated-data analysis of this analysis, we
find a robust positive effect of tail-heaviness on the
accuracy of QR relative to OLS. The finding is strongly
tomoderately supported by the archival-data results of
the pooled and individual profitability (unweighted
and size-weighted) regressions.

In the simulated-data analysis, we also find that
asymmetry has either a U-shape or inverted-U-shape
effect on the accuracy of QR forecasts. Which of these
holds depends on (i) whether Wilcoxon-test- or t-test-
based evidence is relied upon to determine the prev-
alence of a forecasting approach under a given eval-
uation criterion (MAFE or MSFE) and (ii) whether the
accuracy measure is the incremental or the relative
forecasting accuracy. The archival-data analysis also
shows mixed evidence: the effect of asymmetry is
mostly significant but not entirely consistent (i.e., can
be U-shaped or inverted-U-shaped).

Applying the distributional shape analysis frame-
work to cash flow forecasting, we demonstrate the
usefulness of the framework beyond profitability
forecasting. The empirical results support the notion
of an inverted-U-shape effect of asymmetry and pro-
vide additional evidence on the positive effect of
tail-heaviness.

In this study, we have only scratched the surface of
QR’s usefulness by focusing on themedian regression

as its special case. QR in general can produce optimal
estimates/forecasts for asymmetric loss functions
(when τ ≠ 0.5). Prior research has argued that fi-
nancial analysts have an asymmetric loss function
(Clatworthy et al. 2011). If they do, would they find
formulating their forecasts based on QR with τ ≠ 0.5
more aligned with their forecasting objective? What
is the implied τ that can be inferred from analyst
earnings forecasts? Are the implied τ’s similar across
different types of analyst forecasts (cash flow fore-
casts, revenue forecasts, etc.)? These are interesting
questions left for future research to answer.
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Endnotes
1List of largest corporate profits and losses, 2019. Wikipedia, https://
en.wikipedia.org/wiki/List_of_largest_corporate_ profits_and_losses
(accessed August 10, 2019).
2The applications in finance that we are aware of include return
forecasting, portfolio analysis, and risk measurement (Lauridsen
2000, Bassett and Chen 2001, Pohlman and Ma 2010). Recent ap-
plications in accounting include forecasting risk in earnings
(Konstantinidi and Pope 2016).
3Forecasting earnings in practice is often equivalent to forecasting
profitability (e.g., Li 2011, Chang et al. 2020). Data samples used to
forecast earnings typically include firms of different sizes. Deflation
is a technique to control for the size differences. Deflating an earnings
measure by a certain size variable, such as book value of equity, net
operating assets, or total assets, gives a profitability measure (Li et al.
2014, Schröder and Yim 2018).
4We focus on point forecasts in this study. Despite the availability
of methods to produce interval and density forecasts, point fore-
casts remain the most commonly used in practice. They are often
easier to understand and act upon and are less costly to produce
(Diebold 2015).
5We verify that this also holds for our sample. We discuss the ro-
bustness of our results to alternative ways to construct PREDGSL in
Appendix A in the online appendix.
6We use up to 20 earlier years of data to construct the first year of
profitability forecasts in 1989. For the cash flow approach CbOP, this
first year of forecast uses only the previous two years of cash flow
data, because the source of the data (i.e., cash flow statements) is
available only from 1987 onward. The estimated coefficients for
constructing the 1989 forecasts of the cash flow approach CbOP come
from an in-sample regression that uses the 1988 PREDGSL variable,
which requires sales data of the previous 10 years to construct. For
this profitability measure, the 1989 forecasts are constructed with
data from as far back as 1978, whereas for the other profitability
measures, they are constructed with data from as far back as 1969.
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7A firm-year observation’s SIC code is identifiable if its value is not
missing or otherwise may be imputed based on the nonmissing SIC
code of the firm in the nearest future year.
8The U.S. Postal Service category comprises all establishments of the
U.S. Postal Service as an agency of the executive branch of the U.S.
federal government responsible for providing postal service in the
United States. The public administration category contains the ex-
ecutive, legislative, judicial, administrative, and regulatory activities
of federal, state, local, and international governments.
9We have considered also the 0.05 significance level, and the findings
are highly similar.
10To be precise, in defining RelAccur, we set pct.QR.Prevail and
pct.OLS.Prevail to 0.5/500 = 0.001 whenever they have a zero value.
Note that, for any given setup ofM experiments (M = 500 in our case),
the lowest nonzero value of pct.QR.Prevail and pct.OLS.Prevail is 1/M.
So the adjustment above avoids any undefined/infinite value due to
the log transformation while maintaining the intended ranking of the
RelAccur measure.
11Nassim N. Taleb, Distinguished Professor of Risk Engineering at
the New York University Tandon School of Engineering and the
author of the best seller The Black Swan: The Impact of the Highly
Improbable, defines the fat tails of a perturbed Gaussian distribution to
start from the mean minus and plus approximately 2.136 times the
standard deviation.
12We also have considered two additional asymmetry measures and
one additional tail-heavinessmeasure explained in Appendix C in the
online appendix. The inclusion of these measures does not change the
highly consistent findings of the tail-heaviness effect. In the interest of
space, we omit these measures from the reported tables.
13 If the SIC code of afirm-year observation ismissing,we impute the value
based on the nonmissing SIC code of the firm in the nearest future year.
14This means that for the 10-year window case, only three years of
available cash flows data (i.e., from 1987 to 1989) are used in the in-
sample estimation for constructing the 1990 forecasts; only four years
of available data (i.e., from 1987 to 1990) are used for constructing the
1991 forecasts; and so forth. See also the explanation in footnote 6.
15We downloaded the definition of the Fama-French 12-industry
classification on March 31, 2020 from https://mba.tuck.dartmouth
.edu/pages/faculty/ken.french/Data_Library/det_12_ind_port.html.
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