

研究报告

(2015年第10期 总第10期)

清华大学国家金融研究院

2015年8月24日

公募基金经理是否具备选股能力和择时能力?

民生财富研究中心

本报告具体研究了主动管理型股票型基金的业绩是否来自于基金经理的能力,主要通过基金的超额收益回归分析评估基金经理的选股和择时能力。通过对基金经理的选股和择时能力的研究我们发现,虽然有一小部分基金经理具有选股能力,但是基本上没有基金经理具备择时能力,同时具有两种能力的基金经理更是凤毛麟角。同时本报告对基金经理的选股能力和择时能力进行了自举法(Bootstrap)分析,研究发现,公募基金的选股或择时能力并不是由于运气所产生的。

一、 最小二乘法 (OLS) 分析

样本的选取:为了研究基金经理的能力我们选取了需要主动管理的基金作为研究对象,共有448只基金符合拥有三年以上数据的条件,采取月度数据进行回归。与上一章做法相同,计算时剔除了

不是整月的月度收益,数据截止到2014年年底。

本章分析中所选取的模型为法玛弗兰奇三因子模型和基于三因子模型的 Treynor-Mazuy 模型 (T-M 模型)。

法玛—弗兰奇三因子模型 (FF3 模型): 三因子模型指出,投资组合的超额收益由市场风险因子,公司市值和公司账面市值比共同解释,其他因素所带来的残差回报率应为零。而基金经理个人能力显然是并不包括在上述因子之中,所以其对组合收益率的影响应该体现在残差收益率中。因此,分解基金收益率为因子收益率和残差收益率,通过对收益率时间序列进行回归,对残差收益率的统计显著性进行判断,就可以判定基金是否具有主动收益。

$$R_{it} - R_{ft} = \alpha_i + \beta_{im} * (R_{mt} - R_{ft}) + \beta_{ismb} * SMB_t + \beta_{ihml} * HML_t + \varepsilon_{it}$$
 (1)

其中,R_{it}-R_{ft}为 t 月基金 i 的超额收益率; R_{mt}-R_{ft}为 t 月 大盘指数的超额收益率,报告采用中信 A 指作为大盘指标; SMB_t是 第 t 月的小公司与大公司股票收益率之差; HML_t是第 t 月的高账面 市值比公司与低账面市值比公司收益率的差值; R_{ft}为 t 月无风险收 益率,报告采用浮动的一年期定期存款基准利率作为无风险利率。 在评估基金经理的能力时,我们使用基金的复权净值(即考虑分红 再投资)计算基金的收益。

如果基金经理具有通过选股产生超额收益的能力,那么,系数 α应该统计显著并大于零。我们通过判断系数α是否显著为正来考察 基金经理是否具有选股能力。

Treynor-Mazuy 模型 (T-M 模型): Treynor 和 Mazuy (1966)

认为,具备时机选择能力的基金经理应能预测市场走势,在多头时,通过提高投资组合的风险水平以获得较高的收益,在空头时降低投资组合的风险。从而法玛—弗兰奇三因子特征线不再是固定斜率的直线,而是一条斜率会随市场状况变动的曲线,如果在模型中加入一个平方项将更加拟合数据,该曲线相应的回归模型简称为 T-M 模型。因此,基于三因子模型的 T-M 模型就采取以下形式:

$$R_{it} - R_{ft} = \alpha_i + \beta_{im} * (R_{mt} - R_{ft}) + \gamma_i * (R_{mt} - R_{ft})^2 + \beta_{ismb} * SMB_t + \beta_{ihml} * HML_t + \varepsilon_{it}$$
 (2)

其中, R_{it} $-R_{ft}$ 为 t 月基金 i 的超额收益率; R_{mt} $-R_{ft}$ 为 t 月 大盘指数的超额收益率,报告采用中信 A 指作为大盘指标; SMB_t 是 第 t 月的小公司与大公司股票收益率之差; HML_t 是第 t 月的高账面市值比公司与低账面市值比公司收益率的差值; R_{ft} 为 t 月无风险收益率,报告采用浮动的一年期基准定期存款利率作为无风险利率。 γ 代表基金经理的择时能力,如果 γ 显著大于零,那么基金经理具有择时能力。在评估基金经理的能力时,我们使用基金的复权净值(即考虑分红再投资)计算基金的收益。

接下来,本章将着重对回归的结果进行分析总结。其中,三因子模型仅仅检验基金经理是否存在股票选择能力,T-M模型则可以同时检验基金经理的选股能力和市场择时能力。

首先,报告将两个回归得到的α结果整理如下。回归模型中的α以月为单位,为了便于投资者与其对应的年度回报率比较,我们在这里把α年化(乘以12)。

由表 1 初步得出结论: (1) 两个模型得出的年化α显示绝大部

50%分位数

25%分位数

最小值

分基金经理得到的年化 α 都大于 0; (2) 两个模型计算出的年化 α 最大值分别为 17.9%和 19.6%,、三因子模型得出的年化 α 最小值为 -16.8%, T-M模型得出的年化 α 最小值低于-22.8%,最大值和最小值的差异高达 34.7个百分点和 42.3个百分点。

年化α三因子模型T-M 模型平均值2.5%1.2%最大值17.9%19.6%75%分位数6.7%5.5%

2.8%

-1.2%

-16.8%

2.0%

-3.2%

-22.8%

表 1 参数α估计结果的描述统计

如果针对基金经理的选股能力进行分析,我们对参数α的显著性进行判断。其中报告中提到所有参数显著,是指其在显著性水平5%的基础上是显著的。

图 1 和图 2 是三因子模型和 T-M 模型按 α 的 T 值由高到低的顺序进行排列。可以看出,如果以 5%的显著性进行讨论时,图中少部分的基金的 α 的 T 值大于 1.96 以及极少的基金的 α 小于 -1.96。因此,尽管大部分的基金拥有正的 α ,但是拥有显著的为正 α 的基金数目却很少。说明只有少部分的基金经理拥有选股能力。

图 1 三因子模型中 α 的 T 值 (从高到低)

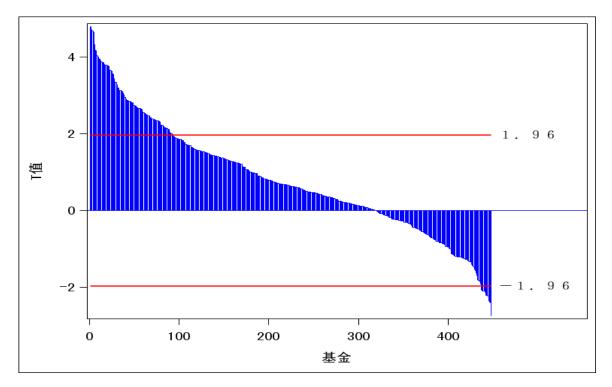


图 2 T-M 模型中 α 的 T 值 (从高到低)

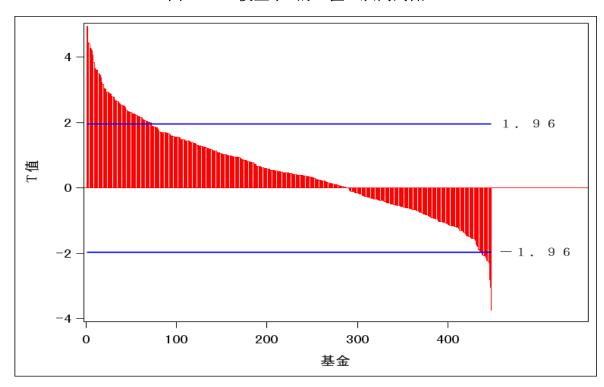


表 2 对参数α显著性的情况进行了统计。结果显示,对于三因子模型而言,有 90 只基金α显著大于 0,占总数的 20.1%;而当考虑择时因素时,α显著且为正的基金则为 68 只,占总数的 15.2%。

可以看出,不管使用哪个模型,只有 15%-20%的基金经理具有选股能力。

表 2 参数α估计显著性结果(5%显著水平)

回归模型	α正显著个数 (只)	α正显著比例		
三因子模型	90	20. 1%		
T-M 模型	68	15. 2%		

接下来,报告从市场择时的角度出发,对 T-M 模型的γ进行分析。图 3-3 为 T-M 模型的回归结果,以γ由高到低的顺序排列,可以看出γ小于 0 的基金所占比例相对比较高,似乎预示着基金经理并没有正向的择时能力,即缺乏随市场走势的改变而适时调整基金的组合的能力。

如果以 5%的显著性进行检验,图 3 中基金的γ的 T 值大于 1.96 的数目较少,另外有小部分基金的γ的 T 值小于-1.96。我们的统计结果表明,在 448 只拥有三年以上历史数据的股票型基金中,拥有正显著γ的基金只有 42 只,占比 9.4%;但有 17 只基金的γ为负并且显著,占比 3.8%,表明这部分基金经理没有明显的择时能力,相反却有显著的反向(错误)择时能力。

1.96 1.96 -2 -4 0 100 200 300 400

图 3 T-M 模型中γ的 T 值(从高到低)

在单独分析完基金经理的选股能力和择时能力的显著性后,接下来报告利用 T-M 模型对参数 α 和参数 γ 进行联合检验分析。

首先,71.7%的基金具有不显著的α和不显著的γ。说明绝大部分的基金经理既不具备选股能力,也不具备择时能力。

其次,有15.2%的基金经理具有正确的选股能力,在这68位基金经理中,有59位经理没有择时能力(占总基金数的13.2%),7位经理有反向(错误)的择时能力(占总基金数的1.6%),有2位基金经理同时具有正向显著的选股和择时能力。

表 3 参数 α 和参数 γ 联合检验结果(个数)

10000000000000000000000000000000000000						
参数						
α	不显著	负显著	正显著	合计		
不显著	321	10	33	364		
负显著	9	0	7	16		
正显著	59	7	2	68		
合计	389	17	42	448		

表 4 参数α和参数γ联合检验结果(百分比)

参数				
α	不显著	负显著	正显著	合计
不显著	71. 7%	2. 2%	7. 4%	81. 3%
负显著	2. 0%	0. 0%	1. 6%	3. 6%
正显著	13. 2%	1. 6%	0. 5%	15. 2%
合计	86. 8%	3. 8%	9. 4%	100.0%

本研究主要采取收益率回归的方法来分析基金的业绩,评估基金经理的选股能力和择时能力,选取三因子模型以及 T-M 模型进行回归。三因子模型里只用于评估基金经理的选股能力,而 T-M 模型则用于评估基金经理的选股和择时能力。

T-M 模型的结果显示,具有正确的择时能力的基金经理仅有 42 位,占比约为总数的 9.4%。其中,既有正向显著选股能力又具备正向显著择时能力的基金经理为 2 人。

综上所述,大部分股票型基金经理既不具备正向显著的择时能力又不具备正向显著的选股能力。大约 20%的基金经理有正确的选股能力,但是基本上没有基金经理具备正确的择时能力,而同时具备两种能力的基金经理更是凤毛麟角。

二、自举法 (Bootstrap) 分析

虽然本文研究发现有部分的基金经理具有显著的选股、择时能力,但是最小二乘法(OLS)回归检验的结果并不能区分这些能力是由于基金经理实际的能力还是运气所带来的,而运气通常很难来度量,Bootstrap分析方法可以通过比较真实的结果和经过

Bootstrap 过程产生的结果来将基金经理的能力与运气进行分离。 本文利用 Bootstrap 方法,对基金经理的选股能力和择时能力分别 进行了分析。

利用 Bootstrap 方法分析选股能力和择时能力的主要步骤为:
1) 用 OLS 方法估计原始模型:

对于选股能力:

$$R_{it} - R_{ft} = \alpha_i + \beta_{im} * (R_{mt} - R_{ft}) + \beta_{ismb} * SMB_t + \beta_{ihml} HML_t + \varepsilon_{it}$$
对于择时能力:

$$R_{it} - R_{ft} = \alpha_i + \beta_{im} * (R_{mt} - R_{ft}) + \gamma_i * (R_{mt} - R_{ft})^2 + \beta_{ismb} * SMB_t + \beta_{ihml} * HML_t + \varepsilon_{it}$$
 (4)

完成估计后,保存估计的系数和残差时间序列 $\{\hat{\epsilon_{it}}, .t:1,....,T_i\}$, T_i 为基金 i 的观测个数。

2)对每只基金的残差分别进行有放回的重复抽样,得到新的残差的时间序列 $\{\widehat{\epsilon_{it}}\}$,其中 b 为 Bootstrap 的次数, $(b=1,2,3,\dots,B)$ 。然后,利用新抽样获得的残差计算没有选股能力或没有择时能力的超额收益,即设置 $\alpha_i=0$,或 $\gamma_i=0$

对于选股能力:

$$R_{it}^{b} - R_{ft} = \widehat{\beta_{im}} * (R_{mt} - R_{ft}) + \widehat{\beta_{ismb}} * SMB_{t} + \widehat{\beta_{ihml}} * HML_{t} + \varepsilon_{it}$$
 (5)
对于择时能力:

$$R_{it}^{b} - R_{ft} = \alpha_{i} + \widehat{\beta_{im}} * (R_{mt} - R_{ft}) + \widehat{\beta_{ismb}} * SMB_{t} + \widehat{\beta_{ihml}} * HML_{t} + \varepsilon_{it}$$
(6)

- 3) 把步骤 2 中计算得到的 $R_{it}^b R_{ft}$ 代替原来的 $R_{it} R_{ft}$,重新对模型 7 或模型 8 进行回归。保存 α_i 或 γ_i 估计的参数和 T 统计值。
- 4) 重复上述 1-3 步骤 B 次,至此,我们获得了某只基金的 B 次 Bootstrap 估计结果的分布。本文将 B 设置为 1000。如果发现

通过 Bootstrap 迭代产生的正的 α (或 γ)只有少数大于实际数据产生的 α (或 γ),就可以得出结论: 样本的变化不是高 α (或 γ),产生的原因,即基金经理的选股或择时能力不是靠运气,而是靠其真实的能力。如果发现通过 Bootstrap 迭代产生的正的 α (或 γ),大部分大于实际数据产生的 α (或 γ),就可以得出结论: 样本的变化可能是高 α (或 γ)产生的原因,即基金经理选股或择时能力的取得有可能是靠运气,因为样本的随机性(运气)也可能产生这样的收益。

根据之前的三因子模型分析,本文发现有 90 只基金具有正显著的α,本文在此对这 90 只基金的选股能力进行 Bootstrap 分析。

表 5 展现的为三因子模型中具有显著选股能力的基金的Bootstrap的结果,从表中可见,在 90 只具有显著选股能力的基金中,有 88 只基金的Bootstrap 的 P 值是小于 0.05 的,即这些基金经理的选股能力并不是由于运气所产生的,而是来自于自身的能力。而另外两只基金的选股能力来自运气的成分更大一些。

表 5 股票型基金选股能力的 Bootstrap 结果

甘人力场	ALPHA 1	T_ALPHA	BOOTSTRAP	甘人妇妇	ALDUA	T ALDUA	BOOTSTRAP
基金名称			Р	基金名称	ALPHA	T_ALPHA	Р
博时主题行业	13. 8%	4. 76	0. 000	华夏经典配置	8. 2%	2. 82	0. 002
华夏回报	14. 2%	4. 75	0. 000	广发稳健增长	9. 4%	2. 8	0. 009
兴全趋势投资	12. 6%	4. 67	0. 000	新华优选分红	9. 1%	2. 77	0. 005
嘉实增长	13. 9%	4. 65	0. 000	华夏红利	7. 8%	2. 77	0. 006
嘉实成长收益	11. 8%	4. 34	0. 000	景顺长城动力平衡	7. 4%	2. 73	0. 005
华宝兴业宝康灵活	8. 3%	4. 21	0. 000	富国天源平衡	6. 4%	2. 72	0. 004
嘉实服务增值行业	11. 3%	4. 15	0. 000	招商安泰股票	7. 3%	2. 69	0. 008
大成价值增长	8. 3%	4. 11	0. 000	泰达宏利成长	11. 0%	2. 69	0. 008
富国天益价值	13. 2%	4. 02	0. 000	华夏回报 2 号	9. 0%	2. 68	0. 008
诺安灵活配置	15. 2%	3. 98	0. 000	信达澳银精华	15. 7%	2. 66	0. 010
博时价值增长	7. 9%	3. 95	0.000	国泰金龙行业精选	8. 2%	2. 66	0. 014

基金名称	ALPHA	T_ALPHA	BOOTSTRAP P	基金名称	ALPHA	T_ALPHA	BOOTSTRAP P
华夏成长	9. 1%	3. 92	0.000	广发聚富	8. 4%	2. 66	0. 006
国投瑞银景气行业	9. 8%	3. 91	0.000	东方策略成长	7. 3%	2. 62	0. 014
长盛成长价值	9. 2%	3. 89	0.000	易方达平稳增长	7. 2%	2. 6	0. 015
华夏大盘精选	13. 6%	3. 86	0.000	新华行业周期轮换	11. 0%	2. 59	0. 015
华夏收入	10. 7%	3. 86	0.000	鹏华行业成长	7. 2%	2. 54	0. 010
银华优势企业	9. 1%	3. 84	0.000	易方达积极成长	8. 6%	2. 53	0. 021
易方达策略成长	12. 6%	3. 8	0. 001	南方积极配置	7. 7%	2. 52	0. 009
华宝兴业宝康消费品	11. 3%	3. 78	0.000	博时精选	6. 4%	2. 49	0. 014
兴全全球视野	10. 9%	3. 73	0.000	华安创新	6. 6%	2. 46	0. 009
银河稳健	10. 4%	3. 7	0. 002	银华优质增长	8. 5%	2. 44	0. 016
南方成份精选	9. 6%	3. 69	0. 001	景顺长城核心竞争力	17. 9%	2. 43	0. 009
泰达宏利周期	11. 9%	3. 66	0. 001	国富弹性市值	7. 6%	2. 39	0. 018
嘉实研究精选	15. 4%	3. 65	0.000	南方高增长	7. 1%	2. 39	0. 015
国泰金鹰增长	11. 5%	3. 56	0. 001	景顺长城鼎益	8. 3%	2. 36	0. 012
泰达宏利稳定	10. 4%	3. 55	0.000	信诚精萃成长	9. 5%	2. 36	0. 019
泰达宏利行业精选	11. 9%	3. 44	0. 001	长盛动态精选	7. 6%	2. 36	0. 020
新华钻石品质企业	8. 9%	3. 44	0. 002	交银成长股票	9. 5%	2. 35	0. 025
海富通精选	7. 8%	3. 33	0.000	南方稳健成长	5. 9%	2. 33	0. 016
景顺长城内需增长	15. 6%	3. 31	0. 003	汇添富价值精选	10. 0%	2. 27	0. 024
鹏华普天收益	8. 6%	3. 21	0. 004	汇丰晋信龙腾	9. 5%	2. 26	0. 036
汇添富优势精选	12. 4%	3. 14	0. 001	易方达策略 2 号	7. 1%	2. 23	0. 021
鹏华价值优势	9. 4%	3. 13	0. 003	汇丰晋信大盘	14. 0%	2. 2	0. 033
诺安平衡	7. 8%	3. 12	0. 002	南方优选价值	9. 0%	2. 19	0. 026
嘉实稳健	7. 1%	3. 12	0. 004	华夏蓝筹核心	6. 1%	2. 18	0. 026
景顺长城优选股票	10. 2%	3. 11	0. 001	华宝兴业多策略	6. 6%	2. 17	0. 033
融通新蓝筹	8. 4%	3. 04	0. 001	富国天瑞强势精选	7. 1%	2. 16	0. 041
国泰金鹏蓝筹价值	7. 3%	3. 01	0. 003	景顺长城内需增长贰 号	12. 1%	2. 16	0. 030
中银中国精选	9. 6%	3. 01	0. 002	富国天成红利	6. 1%	2. 15	0. 040
银华核心价值优选	9. 7%	3	0. 000	大成精选增值	7. 3%	2. 12	0. 043
博时特许价值	13. 6%	3	0. 002	博时平衡配置	6. 7%	2. 11	0. 026
工银瑞信核心价值	9. 8%	2. 91	0. 003	上投摩根中国优势	7. 1%	2. 07	0. 033
申万菱信盛利精选	7. 7%	2. 89	0. 002	嘉实周期优选	7. 0%	2. 04	0. 091
建信内生动力	9. 7%	2. 83	0. 004	融通蓝筹成长	6. 2%	2. 02	0. 041
富国天惠精选成长	9. 7%	2. 83	0. 005	富国天合稳健优选	7. 6%	1. 99	0. 054

图 4 展现的三因子模型中部分具有显著选股能力的基金的 Bootstrap 的分布图。图中的分布曲线为 Bootstrap 结果的分布, 垂直线为实际三因子模型 α 的估计结果。如果 Bootstrap 估计的分

布有较大的比例处于实际α的右边,则表明之前三因子模型估计的结果中,来自于运气成分的比例较大,即基金经理的选股能力可能主要来自于运气成分,而不是自身的能力。反之,如果 Bootstrap估计的分布有较小(或没有)的比例处于实际α的右边,则表明基金经理的选股能力来自运气成分较少,而主要来自于基金经理自身的能力。以博时主题行业基金为例,图中三因子模型估计的α值为1.2%(13.8%/12),Bootstrap估计的分布全部分位于1.2%的左边,表明该基金的选股能力并不是由于运气而获得的,而是来自于基金经理自身的能力。

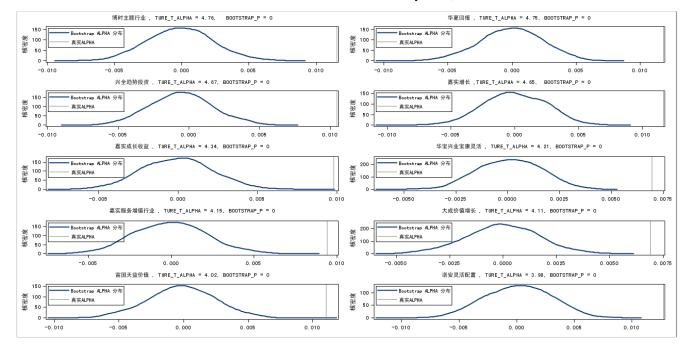


图 4 股票型基金选股能力的 Bootstrap 分布图 (部分)

根据之前的 T-M 模型分析,本文发现有 42 只基金具有正显著的y,现对这些基金的择时能力进行 Bootstrap 分析。

表 6 展现的为 T-M 模型中具有显著择时能力的基金的 Bootstrap 的结果, 从表中可见, 在 42 只具有显著择时能力的基金 中,有28只基金的Bootstrap的P值是小于0.05的,即这些基金 经理的择时能力并不是由于运气所产生的,而是来自于自身的能力。

表 6 股票型基金择时能力的 Bootstrap 结果

表 6 股票型基金择时能力的 Bootstrap 结果								
基金名称	GAMMA	T_GAMMA	BOOTSTRAP P	基金名称	GAMMA	T_GAMMA	BOOTSTRAP P	
华夏大盘精选	0. 95	4. 88	0. 000	易方达价值精 选	0. 43	2. 39	0. 015	
银华领先策略	1. 54	4. 03	0. 002	华安升级主题	1. 54	2. 37	0. 027	
博时特许价值	1. 06	3. 84	0. 022	华夏回报	0. 43	2. 36	0. 030	
兴全趋势投资	0. 53	3. 64	0. 000	易方达中小盘	0. 83	2. 33	0. 055	
新华优选成长	1. 42	3. 63	0. 009	信达澳银精华	0. 94	2. 33	0. 064	
博时平衡配置	0. 60	3. 54	0. 001	金元惠理宝石动力	0. 59	2. 33	0. 008	
诺安灵活配置	0. 78	3. 25	0. 001	国富深化价值	0. 66	2. 32	0. 062	
工银瑞信大盘 蓝筹	1. 22	3. 18	0. 041	新华行业周期 轮换	1. 27	2. 22	0. 046	
西部利得新动	1. 60	3. 12	0. 000	南方优选价值	0. 62	2. 18	0. 103	
光大中小盘	2. 64	3. 03	0. 002	东吴价值成长	0. 62	2. 16	0. 101	
申万菱信竞争 优势	1. 30	3. 01	0. 012	国富弹性市值	0. 37	2. 12	0. 113	
东吴新产业精 选	2. 31	3. 00	0. 002	广发核心精选	0. 96	2. 09	0. 144	
嘉实研究精选	0. 79	2. 97	0. 027	南方优选成长	1. 16	2. 08	0. 027	
华夏红利	0. 43	2. 74	0. 041	东吴新经济	1. 38	2. 06	0. 066	
新华钻石品质 企业	0. 90	2. 64	0. 006	中邮核心优选	0. 41	2. 05	0. 067	
国富中小盘	1. 77	2. 61	0. 036	国投瑞银稳健 增长	0. 59	2. 05	0. 071	
华富量子生命 力	1. 63	2. 54	0. 020	农银汇理策略 精选	1. 44	2. 04	0. 010	
兴全合润分级	1. 53	2. 54	0. 004	华商动态阿尔 法	1. 48	2. 02	0. 065	
兴全社会责任	0. 60	2. 47	0. 086	民生加银景气 行业	1. 31	2. 00	0. 045	
泰信优质生活	0. 61	2. 45	0. 023	金元惠理成长动力	0. 60	1. 98	0. 351	
鹏华消费优选	2. 45	2. 44	0. 005	汇丰晋信消费 红利	1. 13	1. 96	0. 061	

图 5 展现的 T-M 模型中具有显著择时能力的基金的 Bootstrap 的分布图。图中的分布曲线为 Bootstrap 结果的分布,垂直线为实际 T-M 模型γ的估计结果。如果 Bootstrap 估计的分布有较大的比例处于实际γ的右边,则表明之前 T-M 模型估计的结果中,来自于运气成分的比例较大,即基金经理的择时能力可能主要来自于运气成分,而不是自身的能力。反之,如果 Bootstrap 估计的分布有较小(或没有)的比例处于实际γ的右边,则表明基金经理的择时能力来自运气成分较少,而主要来自于基金经理自身的能力。以华夏大盘精选基金为例,图中 T-M 模型估计的γ值为 0.95,Bootstrap估计的分布绝大部分处于 0.95 的左边,表明该基金的择时能力并不是由于运气而获得的,而是来自于基金经理自身的能力。

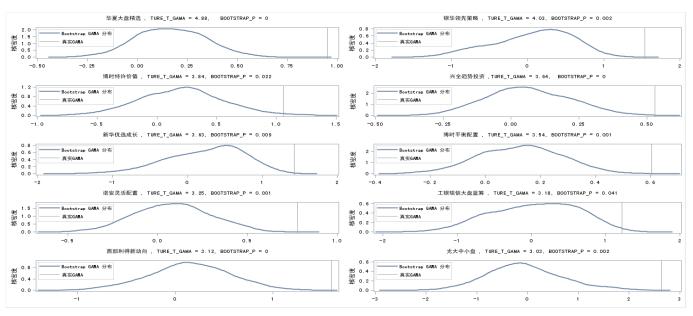


图 5 股票型基金择时能力的 Bootstrap 分布图(部分)

三、结论

通过对基金经理的选股和择时能力的研究,我们发现有 20%的基金经理在 5%的显著水平下具有显著的选股能力,而大部分基金经理没有选股能力。具有正确的择时能力的基金经理在 5%的显著水平下不足总数的 10%。可见,虽然有一小部分基金经理具有选股能力,但是基本上没有基金经理具备择时能力,同时具有两种能力的基金经理更是凤毛麟角。通过对基金经理的选股能力和择时能力的自举法分析发现,基于三因子模型的 90 只具有显著的选股能力的基金种,有 88 只基金通过了自举法的检验;在 42 只具有显著择时能力的基金中,有 88 只基金的通过了自举法检验,即这些基金的选股或择时能力并不是由于运气所产生的。

(2015年8月24日)

报 送:

联系人: 杨婷婷 电 话: 62792346