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Diffusing Coordination Risk†

By Deepal Basak and Zhen Zhou*

In a regime change game, privately informed agents sequentially 
decide whether to attack without observing others’ previous actions. 
To dissuade them from attacking, a principal adopts a dynamic 
information disclosure policy, frequent viability tests. A viability 
test publicly discloses whether the regime has survived the previ-
ous attacks. When such tests are sufficiently frequent, in the unique 
cutoff equilibrium, agents never attack if the regime passes the lat-
est test, regardless of their private signals. We apply this theory to 
demonstrate that a borrower can eliminate panic-based runs by 
sufficiently diffusing the rollover choices across different maturity 
dates. (JEL C72, D82, G21)

In a coordination game, the strategic uncertainty that agents face concerning the 
actions and beliefs of others may lead to undesirable outcomes. Consider a bor-
rower who has issued short-term debts to finance some illiquid investment. When 
the debt matures, a creditor may not roll over if he is wary of other creditors with-
drawing their funds. This debt structure could cause a debt run solely on the basis of 
panic and not on underlying fundamental. We model this as a global game of regime 
change.1 In a dynamic setting, we propose a simple information disclosure policy 
that influences the beliefs, and thus actions, of agents. This policy resolves strategic 
uncertainty and avoids undesirable outcomes.

Consider a regime, a principal, and a mass 1 of agents. The agents move sequen-
tially: an agent ​i  ∈  [0, 1]​ moves at time ​i​ and decides whether to attack a regime, 
but he does not see other agents’ previous actions. The underlying fundamental 
strength of the regime is ​θ​. If ​θ​ is sufficient to withstand the aggregate attack, the 

1 For examples of a global game of regime change, see Morris and Shin (1998) and Angeletos, Hellwig, and 
Pavan (2007) for the currency crisis, Goldstein and Pauzner (2005) for self-fulfilling bank runs, Vives (2014) for 
financial fragility, Edmond (2013) for riots and political change, and Konrad and Stolper (2016) for fight against 
tax havens. For more recent developments, see Szkup and Trevino (2015).
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regime survives; otherwise, it does not. Suppose there is a threshold ​p​ such that an 
agent will not attack if and only if he believes with probability higher than ​p​ that 
the regime will survive. As is the standard in literature of global games, agents are 
uncertain about the underlying fundamental ​θ​ and receive some noisy private sig-
nals ​​s​i​​​.

The principal wants the regime to survive. However, she cannot influence the 
exogenous fundamental. She can strategically disclose information at different dates 
regarding the exogenous fundamental and past endogenous attacks to dissuade the 
agents from attacking.

First, let us consider two simple policies: no disclosure and full disclosure. 
Under no disclosure, agents have no information about past actions of other agents. 
Therefore, the game is essentially a simultaneous move game (see Morris and Shin 
2003), and there is a unique equilibrium in which agents attack if and only if they 
receive a private signal below some cutoff.

On the other hand, if agents know the underlying fundamental and perfectly 
observe other agents’ previous actions, all attacking is a possible equilibrium out-
come. If there are only finitely many agents, it follows from backward induction 
that agents will coordinate on the payoff-dominant action.2 However, in many 
examples such as the currency crisis problem (see Morris and Shin 1998 and 
Angeletos, Hellwig, and Pavan 2007), attacking the fixed exchange rate regime is 
the payoff-dominant action for agents, while the principal’s interest is not aligned 
with that of the agents because the principal wants to defend it.

Thus, even if full disclosure is feasible, the principal may want to conceal some 
information. A vast range of partial disclosure policies exist. We consider a simple 
dynamic information disclosure policy called, frequent viability tests. As the name 
suggests, a viability test at some date ​t  ∈  [0, 1]​ checks whether the regime contin-
ues to be viable, i.e., if it has survived attacks thus far (if any). The result of this test 
is publicly disclosed. The principal only chooses an integer ​J​ denoting the frequency 
of viability tests. The tests are conducted at a regular interval of ​1/J​, starting at 0.

Our main result shows that if the principal runs viability tests with sufficient fre-
quency, then there is a unique cutoff equilibrium in which agents ignore their private 
information and never attack a viable regime.

In the spirit of Bayesian persuasion, we can interpret this policy as a recommen-
dation by the principal to the agents not to attack a regime that passes the latest via-
bility test and to attack if it fails. If the regime fails a viability test, it cannot survive 
even without any further attack. Hence, it is the dominant strategy for all agents in 
the subsequent groups to follow the principal’s recommendation and attack. The 
challenging case arises when the regime passes the test.

If the regime passes a viability test, then the agents become more optimistic about 
the fundamental ​θ​ and other agents’ beliefs about ​θ​ and so on. If one agent is less 
likely to attack, then it follows from strategic complementarity that others are also 
less likely to attack. Thus, it is intuitive that positive viability news reduces aggre-
gate attack in the equilibrium.

2 We discuss the case of full disclosure in detail in Section V.
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When the principal runs viability tests for ​J​ times, the policy separates the agents 
into ​J​ groups. The ​1/J​ mass of agents moving between the ​j​th test and the ​( j + 1)​th 
test are referred to as the group ​j​ agents. We examine the equilibrium in cutoff strat-
egies: for any ​j​, after learning that the regime has passed the ​j​th viability test, any 
agent in the group ​j​ does not attack if and only if his private signal is higher than 
some cutoff ​​​s ˆ ​​j​​​. Thus, when the regime is stronger (higher ​θ​), more agents receive 
signals that exceed the cutoff and fewer agents from each group attack. This induces 
a nondecreasing sequence of fundamental cutoffs ​​{​​θ _​​j−1​​}​ j=1​ J ​ ​ such that the regime 
passes the ​j​th test if and only if the underlying fundamental is no lower than the 
cutoff ​​​θ _​​j−1​​​.

These cutoffs are endogenous, which makes the policy history-dependent. 
Moreover, the effectiveness of the present viability news depends on the effective-
ness of the future viability news. We develop an inductive argument: if the tests are 
sufficiently frequent, then agents in the group ​j​ follow the principal’s recommenda-
tion if they believe that agents in the subsequent groups will do so regardless of the 
cutoff strategy played by others in the past (equivalently for any ​​​θ _​​j−1​​​).

Given that the regime has passed the ​j​th viability test and the agents in subse-
quent groups will follow the principal’s recommendation, the regime will survive 
as long as it withstands attacks from the group ​j​. Suppose that the agents in group ​j​ 
follow some cutoff strategy ​​​s ˆ ​​j​​​. This monotone strategy can constitute an equilibrium 
if the “marginal agent” with the signal ​​​s ˆ ​​j​​​ is indifferent between attacking and not 
attacking, i.e., he believes that the regime survives with probability ​p​. We argue that 
there exists a ​​J ˆ ​​ such that if the group size is smaller than ​1/ ​J ˆ ​​, then no such equilib-
rium can exist.

This is because, under frequent viability tests, the size of each group is small. 
If the group size is smaller, the magnitude of attack from this group is less for any 
given cutoff strategy ​​​s ˆ ​​j​​​. Given that no one from the subsequent groups will attack 
a viable regime, the regime is more likely to survive. This, in turn, amplifies the 
influence of positive news from the ​j​th viability test and makes the marginal agent 
more confident about the survival of the regime. We demonstrate that the marginal 
agent’s belief regarding the chance of survival uniformly converges to 1 with group 
size regardless of ​​​θ _​​j−1​​​. It follows from uniform convergence that there exists a ​​J ˆ ​​ 
such that, under sufficiently frequent viability tests (i.e., ​J  > ​ J ˆ ​​ ), the marginal agent 
always believes that the regime will survive with a probability strictly higher than p; 
and thus, he strictly prefers not to attack if agents in the subsequent groups will not 
attack a regime that passes the latest viability test.

Under sufficiently frequent viability tests, since no one moves after the last group 
of agents, there cannot be any cutoff equilibrium in which group ​J​ agents attack a 
viable regime (regardless of the cutoff strategies played by others in the past). Given 
that, so will group ​J − 1​ agents and so on. Thus, the risk that agents may attack a 
viable regime unravels from the end.

In practice, borrowers often adopt an asynchronous debt structure, i.e., diversify 
debt rollovers across dates. This type of debt structure diffuses the rollover risk that 
would otherwise be concentrated at a single maturity date. Under such a diffused 
structure, the creditors whose debts mature at a later date can learn whether the 
borrower is still viable (has not defaulted). Hence, there is essentially a viability 
test at each maturity date. The news that the borrower has not defaulted yet may 
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sound obvious and not a deliberate attempt to manipulate agents’ beliefs. One may 
believe that the news is not likely to have any substantial influence on creditors’ 
behavior. However, the borrower provides this news ​J​ many times when only ​1/J​ 
fraction of debts mature at a time. We extend our model to show that a sufficient 
asynchronous debt structure (sufficiently large ​J​ ) makes the borrower immune to  
panic-based runs.

Related Literature.—Similar to a Pigouvian planner, our principal attempts to 
achieve the desired outcome that the market fails to deliver. Sákovics and Steiner 
(2012) and Cong, Grenadier, and Hu (forthcoming) find optimal subsidies that, at a 
given cost, maximize the likelihood of successful coordination.3 Unlike the planner 
in the papers mentioned above, we consider a principal who cannot offer monetary 
incentives. Instead, she acts as an information designer and discloses some relevant 
information. We consider a canonical global game of regime change, and as is stan-
dard in the literature, we assume a private information environment (see Carlsson 
and van Damme 1993). Similar to Bergemann and Morris (2013), the principal does 
not have access to agents’ private information.

The two most closely related papers are Inostroza and Pavan (2018) and Goldstein 
and Huang (2016). The authors also propose a partial information disclosure policy, 
a one-time “stress test.” 4 In this paper, the principal exploits the fact that agents do 
not move simultaneously and runs multiple viability tests over time. Thus, the paper 
belongs to the recent literature on dynamic information design. Ely (2017) is the first 
paper to extend the static Bayesian persuasion model of Kamenica and Gentzkow 
(2011) to the dynamic setting, where the disclosure policies are history-independent. 
Doval and Ely (2019) considers a general extensive form game with incomplete 
information in which the principal does not know the exact extensive form that 
governs the play.5

Our paper is related to the dynamic coordination game literature as well. Dasgupta 
(2007) considers a two-period problem in which agents receive noisy private infor-
mation about the attacks from the first period. Similar to our model, in Angeletos, 
Hellwig, and Pavan (2007) and Huang (2017) agents learn from the past through 
viability news, which results in multiple cutoff equilibria. Unlike the papers men-
tioned above, we optimally choose the information transmission over time. Frankel 
and Pauzner (2000) introduces asynchronicity by allowing the agents to revise their 
decisions following a Poisson process. In their model, agents know the current state 
but are uncertain about the volatile future.6 He and Xiong (2012) extends this frame-
work to study the role of volatile fundamental under asynchronous debt structure. 

3 While Sákovics and Steiner (2012) considers heterogeneous agents and demonstrates that subsidizing the 
more reluctant agents matters more, Cong, Grenadier, and Hu (forthcoming) demonstrates that if liquidity injection 
is equally costly across periods in a dynamic coordination problem, early injection is more helpful.

4 Information design has been studied in other strategic contexts, such as voting and auctions. See Bergemann 
and Morris (2019) for a recent survey of this literature. 

5  Significant work has been conducted on dynamic information feedback in the context of strategic experimen-
tation. See Hörner and Skrzypacz (2016) for a survey of this literature. 

6 Sequential move has also been studied in the context where agents’ payoffs are independent of others’ 
actions but there is incomplete information about a common fundamental (see Banerjee 1992 and Bikhchandani, 
Hirshleifer, and Welch 1992). For games of strategic substitutes such as public good contribution, Varian (1994) 
shows that sequential move usually reduces the total contribution.
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While the two papers mentioned above take the asynchronous structure as a given, 
we take a step back and address what necessitates the asynchronous debt struc-
ture in the first place. We find the justification in terms of information transmission 
and identify the optimal design of the asynchronous structure from the borrower’s 
perspective.

The rest of the paper is organized as follows. Section I describes the model, the 
diffused policy, and the solution concept. Section II illustrates the role of a one-
time viability test. In Section III, we leverage this idea to develop the argument for 
frequent viability tests and establish our main result. In Section IV, we extend the 
model to study its application in debt rollover. In Section V, we discuss full disclo-
sure policy and the factors that may make persuasion harder or even impossible. 
Section VI concludes this paper. Proofs that are not presented in the paper are pro-
vided in the Appendix.

I.  A Simple Model of Regime Change

There is a regime, a principal, and a mass 1 of agents. The agents are indexed 
by ​i  ∈  [0, 1]​. Agent ​i​ moves at time ​i​ and takes an action ​​a​i​​  ∈  {0, 1}​, where ​1​ (​0​) 
indicates attacking (not attacking) the regime.

The agents cannot observe other agents’ previous actions. Let ​θ​ be the underlying 
fundamental strength of the regime and ​w  = ​ ∫ i​ 

 
​​​a​i​​ di​ be the aggregate attack. The 

regime survives if and only if its fundamental strength ​θ​ is strong enough to with-
stand the aggregate attack against it, i.e., ​θ  ≥  w​.

Agents are assumed to be ex ante identical and risk neutral. Given that the fun-
damental strength ​(θ )​ and the aggregate attack ​(w)​, let ​u(​a​i​​, w, θ)​ be the payoff for 
agent ​i​ if he takes action ​​a​i​​​, where

(1)	​ u​(0, w, θ)​  = ​ {​​b​1​​​  if θ  ≥  w​  ​c​0​​
​ 

if θ  <  w
​​ ,    u​(1, w, θ)​  = ​ {​ ​c​1​​​  if θ  ≥  w​  ​b​0​​

​ 
if θ  <  w

​​​ .

We assume that (i) ​​b​1​​  > ​ c​1​​​, i.e., if an agent knows that the regime will survive, not 
attacking is the desirable action; and (ii) ​​b​0​​  > ​ c​0​​​‚ i.e., if an agent knows that the 
regime will not survive, attacking is the desirable action.7

However, agents are uncertain about ​θ​ and hence do not know whether the 
regime will survive. Each agent ​i​ receives a noisy private signal about ​θ​, denoted 
by ​​s​i​​  =  θ + σ ​ϵ​i​​​, where ​​ϵ​i​​​ is a random noise with zero mean, and ​σ  >  0​ scales 
the random noise ​​ϵ​i​​​. It is common knowledge that ​θ​ follows a distribution ​Π​, 
and the error terms ​​ϵ​i​​​ are drawn independently of ​θ​ and follow the independent 
and identical distribution ​F​.8 We assume that ​F​ has a support ​[−1/2, 1/2]​ and 
that it admits a continuous density ​f​ that is strictly positive and bounded in this 
support, i.e., ​0  < ​  f _ ​  ≤  f (ϵ) ≤ ​ f –​  <  ∞​. Moreover, ​f​ is log-concave. We also 
assume that ​Π​ has a support ​[​θ _​, ​θ – ​ ]​ that is sufficiently wide such that ​​θ _​  <  −σ​ and ​​

7 This payoff specification is standard in the literature. However, as the agents move sequentially, in practice, 
the payoff may depend on the history of attacks. In Section IV, we show that our result is robust to more general 
payoff structures.

8 See Judd (1985) for the existence of a continuum of independent random variables.
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θ – ​  >  1 + σ​. Distribution ​Π​ admits a continuous density ​π​ that is strictly positive 
and bounded in ​[−σ, 1 + σ]​, i.e., ​0  < ​ π _​  ≤  π(θ)  ≤  ​π – ​  <  ∞​.

If ​θ  ≥  1​, the regime will surely survive regardless of ​w​, and if ​θ  <  0​, the 
regime cannot survive regardless of ​w​. Only when ​θ  ∈  [0, 1)​, the regime’s survival 
is dependent upon the aggregate attack ​w​. Note that for any ​θ  ∈  [0, 1)​, the propor-
tion of agents who receive a signal lower than ​s​ is ​F (​√ _ τ ​ (s − θ))​. For an agent with 
private signal ​s  ≥  1 + σ/2​, the dominant strategy is not to attack, and for an agent 
with private signal ​s  <  −σ/2​, the dominant strategy is to attack. An agent who 
receives a private signal ​s  ∈  [−σ/2, 1 + σ/2)​, does not have a dominant strategy. 
He updates his belief that ​θ  ≥  A​ (for some ​A​) as 9

	​ Pr​(θ  ≥  A | s)​  = ​ ∫ 
A
​ ​θ 
– ​​​​
(

​ 
π​(θ)​ f ​(​√ _ τ ​ ​(s − θ)​)​

  ________________   
​∫ ​θ _​​ ​θ 

– ​​​ π​(θ)​ f ​(​√ _ τ ​​(s − θ)​)​ dθ
 ​
)

​ dθ​.

The log-concavity of ​f​ is equivalent to the monotone likelihood ratio property 
(MLRP). That is, for ​​s​1​​  > ​ s​2​​​,

	​ ​ 
f ​(​√ _ τ ​​(​s​1​​ − θ)​)​

  ___________  
f ​(​√ _ τ ​​(​s​2​​ − θ)​)​ ​​

is increasing in ​θ​. This implies that, for any ​A  >  B​, ​Pr(θ  ≥  A | s, θ ≥  B)​ is increas-
ing in ​s​ (see the online Appendix for the formal argument).

Suppose an agent believes that the regime survives with probability ​P​. The 
expected payoff from attacking (​​a​i​​  =  1​) is ​P ​c​1​​ + (1 − P) ​b​0​​​, while the expected 
payoff from not attacking (​​a​i​​  =  0​) is ​P ​b​1​​ + (1 − P) ​c​0​​​. Therefore, the agent does 
not attack if and only if he believes that the probability of the regime surviving 
(or ​P​) is greater than

(2)	​ p  ≔ ​   1 _ 
1 + ​ ​b​1​​ − ​c​1​​ _ ​b​0​​ − ​c​0​​

 ​
 ​​ .

The Principal’s Objective.—The principal obtains a payoff of ​1​ if the regime sur-
vives and ​0​ otherwise. If ​θ  <  0​, the regime cannot survive. Otherwise, the regime 
is viable, which means the regime survives if no one attacks it. However, a viable 
regime may not survive if agents attack. We call the ex ante probability that a viable 
regime may not survive: coordination risk. The principal seeks to minimize this 
coordination risk. If agents never attack a viable regime, then this risk is eliminated. 
However, an agent will not attack only if he believes that the regime will survive 
with a probability of at least ​p​. We denote ​p​ the reluctance of the agents. Note that 
when attacking is the payoff-dominant action (​​b​1​​  < ​ b​0​​​), the principal’s interest is 
not aligned with that of the agents (and the agents are more reluctant). We discuss 
this in Section V.

9 Note that although we use the ​​θ _​​ and ​​θ 
–
 ​​ in the limit of the integration, for a given ​s​, if ​θ  >  s + σ/2​ 

or ​θ  <  s − σ/2​, ​f (​√ _ τ ​ (s − θ))  =  0​.
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A Diffused Policy ​J​.—The principal, who can be thought of as an information 
designer, can disclose some information over time based on the (exogenous) fun-
damental as well as the (endogenous) history of actions. We focus on a particular 
dynamic information disclosure policy. Consider a test that checks whether the 
regime continues to be viable at any date ​t​, i.e., if it can survive in the absence of fur-
ther attacks, and disclose the test result publicly. We call such tests—viability tests, 
and a positive test result—the public news of continued viability (PNV). Before 
agents move and the fundamental ​θ​ is realized, the principal chooses the frequency 
at which such viability tests should run. The policy is announced publicly. Without 
loss of generality, we only consider regular intervals between tests.

DEFINITION 1: A diffused policy ​J​ conducts the viability test at a regular interval 
of ​α  =  1/J​ starting at ​0​, i.e., at ​( j − 1)α​ for ​j  =  1, 2, …, J​.

The ​j​th test is conducted at time ​( j − 1)α​ for any ​j  =  1, 2, …, J​. The agents 
in ​[( j − 1)α, jα)​ move between the ​j​th test and the next test. We refer to these ​α​ 
mass of agents as group ​j​. The policy ​J​ separates the agents into ​J​ different groups 
based on the latest public news from the viability tests they can receive. A more 
diffused policy indicates the increased frequency of viability tests (higher ​J​ ), or 
equivalently the group size ​α​ is smaller.

Cutoff Equilibrium.—Under a diffused policy ​J​, the group ​j​ agents obtain public 
information on whether the regime has passed the ​j​th viability test before taking 
action. Furthermore, each agent has a private signal regarding the underlying funda-
mental. If the regime fails a viability test, then the regime will not survive regardless 
of the remaining agents’ actions. Hence, attacking is the dominant strategy for the 
group ​j​ agents. The strategic decision is nontrivial only when the regime passes the 
test, which is the focus of our analysis. In what follows, we limit our attention to the 
perfect Bayesian equilibrium in monotone strategies such as the case after agents 
learn that the regime has passed the viability test, the probability that an agent ​i​ 
attacks ​​ρ​i​​(​s​i​​)​ is nonincreasing in the private signal ​​s​i​​​. When the agents follow mono-
tone strategies, a larger mass of agents attack against a weaker regime. Therefore, a 
stronger regime is more likely to survive. Under log-concavity of ​f​, agent ​i​ believes 
the regime is strictly more likely to survive when ​​s​i​​​ is higher. Thus, in equilibrium, 
all agents in the same group ​j​ (for any ​j​) must follow a symmetric cutoff strategy: 
attack if and only if ​​s​i​​  < ​​ s ˆ ​​j​​​.10 We refer to such equilibrium as cutoff equilibrium.

As the game continues, more agents attack. Hence, there exists a nondecreasing 
sequence of cutoff ​​{​​θ _​​j−1​​}​ j=1​ J ​ ​ such that the regime passes the ​j​th viability tests if and 
only if ​θ  ≥ ​​ θ _​​j−1​​​. Let us define ​​θ ˆ ​​ such that if ​θ  ≥ ​ θ ˆ ​​, then the regime passes all via-
bility tests and survives. If there were a ​(J + 1)​th viability test after group ​J​, then ​​​θ _​​J​​​ 
would be equal to ​​θ ˆ ​​.

10 Suppose an agent in group ​j​ randomizes upon receiving a signal ​​​s ˆ ​​j​​​. Then, the agent is indifferent between 
attacking and not attacking. Therefore, any agent ​i​ in group ​j​ must play ​​ρ​i​​(​s​i​​)  =  0​ for ​​s​i​​  >  ​​s ˆ ​​j​​​ and ​​ρ​i​​(​s​i​​)  =  1​ 
for ​​s​i​​  <  ​​s ˆ ​​j​​​. We follow the convention that ​​ρ​i​​(​​s ˆ ​​j​​)  =  0​ (this does not play a significant role in our results).
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Persuasion.—In the spirit of Bayesian persuasion, one can interpret this policy 
as a recommendation by the principal to the agents to “not attack” when the regime 
passes the test and “attack” when it does not.

DEFINITION 2: A policy is persuasive if there is no cutoff equilibrium, in which an 
agent attacks a regime that passes the latest test.

If a diffused policy is persuasive, then the only cutoff equilibrium is that in which 
agents ignore their private information and follow the principal’s recommendation. 
This means that no agent attacks a viable regime and thus, any regime with underly-
ing fundamental ​θ  ≥  0​ survives. In other words, under a persuasive policy, the only 
equilibrium cutoff fundamental is ​​θ ˆ ​  =  0​, and the coordination risk is eliminated.

II.  One-Time Viability Test

Consider a degenerate policy, in which no tests are conducted. Since agents do 
not have any information about past actions of other agents, the game is essentially 
a simultaneous move regime change game. It follows from Morris and Shin (2003) 
that if the private signals are sufficiently precise, then there is a unique cutoff equi-
librium. Under the uniform prior, one can explicitly solve for the unique cutoff sig-
nal as ​​s​​ ∗​  =  p + (1/​√ _ τ ​ )​F​​ −1​( p)​. This means that the regime survives the attacks 
if and only if ​θ  ≥  p​. Recall that an agent can be dissuaded from attacking if he 
believes the regime will survive with probability higher than ​p​. Thus, it is intuitive 
that when ​p​ is higher, the ex ante chance of survival is lower.

To understand the effects of the viability test, let us first consider the pol-
icy ​J  =  1​, i.e., a one-time viability test. The regime passes the test when ​θ  ≥  0​. 
The agents have different beliefs over ​θ​ based on their private signals. Thus, PNV 
will not affect all agents in the same fashion. The agents with private signal ​​s​i​​ 
∈  [−σ/2, σ/2)​ once believed that ​θ​ could be less than ​0​, but the public news tells 
them otherwise. This makes them more optimistic about the strength of the regime, 
and thus less likely to attack. Owing to the strategic complementarity, other agents, 
including those who already know that ​θ  ≥  0​ from their private information, 
become more optimistic about the success of the regime; hence, they are also less 
likely to attack.11 It is intuitive that after learning that the regime is viable, in equi-
librium, the agents will attack less aggressively. However, the news may not be 
strong enough, and there can be an equilibrium in which an agent attacks the regime 
that has passed the viability test (as in Goldstein and Huang 2016).

Consider a hypothetical game that exactly reflects that presented above with one 
exception: it is played between some ​α  <  1​ mass of agents instead of ​1​ mass of 
agents. The smaller the ​α​, the more likely it is that ​θ  ≥  α​; in other words, even 
if all the ​α​ mass of agents attack, the regime will survive. However, agents may 
receive private signal ​​s​i​​  <  α − σ/2​ and believe that the regime will not survive if 
others attack. To understand whether such agents can be persuaded not to attack, we 
need to look into their beliefs about others in the equilibrium. Below, we investigate 

11 Note that PNV makes the agents more optimistic about the success of the regime regardless of whether attack-
ing is the payoff-dominated action. We revisit this issue later in Section V.
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how the equilibrium strategy is affected when a small mass of agents learns that the 
regime has passed the viability test.

Persuasive Viability Test

Although the positive news ​θ  ≥  0​ may not be strong enough to persuade a mass ​1​ 
of agents, the following lemma shows that a one-time viability test can be persuasive 
when the mass of agents is sufficiently small. We emphasize this result because it 
plays a crucial role in deriving our main result.

LEMMA 1: Suppose that there is only one group with size ​α​ and they learn PNV. 
There exists ​​α​​ ∗​  >  0​ such that there is no cutoff equilibrium in which an agent 
attacks a viable regime if and only if ​α  < ​ α​​ ∗​​.

PROOF:
Suppose that agents follow some cutoff strategy, ​​s ˆ ​​. Then, for any ​θ​, the aggregate 

attack is ​α Pr (s  < ​ s ˆ ​|θ)  =  α F(​√ _ τ ​ (​s ˆ ​ − θ))​. Define ​A(​s ˆ ​, α)  ∈  [0, α]​ such that

(​​A​​ α​​)	​ αF​(​√ _ τ ​ ​(​s ˆ ​ − A​(​s ˆ ​, α)​)​)​  =  A​(​s ˆ ​, α)​​.

By definition, the regime survives if and only if ​θ  ≥  A(​s ˆ ​, α)​. We refer to this as the 
aggregate condition (​​A​​ α​​).

After learning PNV (​θ  ≥  0​), an agent with private signal ​​s​i​​​ believes that the 
regime will survive with probability

(3)	​ Pr ​(θ  ≥  A​(​s ˆ ​, α)​ | ​s​i​​, θ  ≥  0)​  = ​ 
​∫ 

A​(​s ˆ ​,α)​​ 
​θ 
–
 ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(​s​i​​ − θ)​)​ dθ

   ____________________   
​∫ 0​ ​θ 

– ​​​ π​(θ)​ f ​(​√ _ τ ​ ​(​s​i​​ − θ)​)​ dθ
 ​ ​.

It follows from log-concavity of ​f​ that this probability is higher for the agents 
with higher private information ​​s​i​​​ (see the online Appendix for the formal proof). 
Define ​​I​​ v​(​θ ˆ ​)​ such that if the survival criteria is ​θ  ≥ ​ θ ˆ ​​, the agent who receives private 
signal ​​s​i​​  = ​ I​​ v​(​θ ˆ ​)​ is indifferent between attacking and not attacking:

(​​I​​ v​​)	​​ 
​∫ 
​θ ˆ ​
​ ​θ – ​​​ π​(θ)​ f ​(​√ _ τ ​​(​I​​ v​​(​θ ˆ ​)​ − θ)​)​ dθ

   _____________________   
​∫ 0​ ​θ 

–
 ​​​ π​(θ)​ f ​(​√ _ τ ​​(​I​​ v​​(​θ ˆ ​)​ − θ)​)​ dθ

 ​  =  p​.

We refer to this as the indifference condition (​​I​​ v​​).
Suppose that all agents are following the cutoff strategy ​​s ˆ ​​ and consequently, 

the survival criterion is ​​θ ˆ ​  =  A(​s ˆ ​, α)​. By definition, any agent with ​​s​i​​  =  β(​s ˆ ​) 
≔ ​ I​​ v​(A(​s ˆ ​, α))​ is indifferent between attacking and not attacking. Hence, a cutoff 
strategy ​​s ˆ ​​ can constitute an equilibrium if ​​s ˆ ​ =  β(​s ˆ ​).​ If that is the case, we have

	​​ 
​∫ 

A​(​s ˆ ​,α)​​ 
​θ – ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(​s ˆ ​ − θ)​)​ dθ

   ____________________   
​∫ 0​ ​θ 

–
 ​​​ π​(θ)​ f ​(​√ _ τ ​ ​(​s ˆ ​ − θ)​)​ dθ

 ​   =  p​.
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Finally, substituting ​​s ˆ ​​ from the aggregate condition (​​A​​ α​​) in the above, we get

	​​ 
​∫ 

A​(​s ˆ ​,α)​​ 
​θ – ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(A​(​s ˆ ​, α)​ − θ)​ + ​F​​ −1​​(​ A​(​s ˆ ​, α)​ _ α  ​)​)​ dθ

     ___________________________________     
​∫ 0​ ​θ 

– ​​​ π​(θ)​ f ​(​√ _ τ ​ ​(A​(​s ˆ ​, α)​ − θ)​ + ​F​​ −1​​(​ A​(​s ˆ ​, α)​ _ α  ​)​)​ dθ
 ​   =  p​.

The left-hand side captures the belief of the marginal agent, given he learns PNV, 
that “given that ​α​ fraction of agents play the cutoff strategy ​​s ˆ ​​, the regime has a per 
capita fundamental strength that surpasses the required cutoff ​A(​s ˆ ​, α)/α​, and thus 
survives.” We define ​G : [0, 1] × [0, 1]  →  [0, 1]​ as follows:

(G)	​ G​(x, α)​  ≔ ​ 
​∫ α x​ ​θ – ​ ​​ π​(θ)​ f ​(​√ _ τ ​ ​(α x − θ)​ + ​F​​ −1​​(x)​)​ dθ

    __________________________    
​∫ 0​ ​θ 

–
 ​​​ π​(θ)​ f ​(​√ _ τ ​ ​(α x − θ)​ + ​F​​ −1​​(x)​)​ dθ

 ​​.

Note that ​G(x  =  A(​s ˆ ​, α)/α, α)​ represents the belief of the marginal agent. By 
definition, ​G(x, α  =  0)  =  1​ for any ​x  ∈  [0, 1]​, and ​G(x  =  0, α)  =  1​ for any ​
α  ∈  [0, 1]​. For any ​x  ∈  (0, 1]​, ​​lim​α→0​​ G(x, α)  =  1​, i.e., the belief of the marginal 
agent point-wise converges to ​1​ as ​α  →  0​. Since ​G​ is a continuous function defined 
over a compact set, it is uniformly continuous (Heine-Cantor Theorem). Therefore, 
for any ​ε  >  0​, there exists ​δ  >  0​, such that for any ​(x, α), (x′, α′ )  ∈  [0, 1] × [0, 1]​ 
with ​‖(x, α) − (x′, α′ )‖  <  δ​,

	​​ |G​(x, α)​ − G​(x′, α′ )​|​  <  ε​.

Consider any ​x  ∈  [0, 1]​, fix ​x′  =  x​ and ​α′  =  0​, we have ​G (x, α)  >  1 − ε​ for 
all ​α  <  δ​. Thus, ​G (x, α)​ uniformly converges to ​1​ (not only point-wise) when ​α​ 
converges to ​0​. In other words, there exists ​​α ̃ ​  >  0​ such that whenever ​α  < ​ α ̃ ​​, 
​G(x, α)  >  p​ for all ​x  ∈  [0, 1]​.

Define ​  ≔  {​α ̃ ​  ∈  (0, 1]  |  ∀ x  ∈  [0, 1], ∀ α  ∈  [0, ​α ̃ ​), G(x, α; τ)  >  p}​ and ​​α​​ ∗​ 
≔  sup ​. It follows from the arguments above that ​  ≠  ∅​ and ​​α​​ ∗​  >  0​, and by 
construction, the set ​​ is bounded above by ​1​, so the supremum exists.

CLAIM 1: For any ​α  ≥ ​ α​​ ∗​​, there exists ​x  ∈  [0, 1]​ such that ​G (x, α)  ≤  p​.

The proof of the claim is relegated to the Appendix. From the argument above, it 
follows that there exists ​​α​​ ∗​​ such that whenever the mass of agents playing the game 
is less than ​​α​​ ∗​​, given any cutoff strategy ​​s ˆ ​​, the marginal agent with signal ​​s ˆ ​​ believes 
that the regime will survive with probability strictly higher than ​p​. Thus, the agent 
strictly prefers not to attack, i.e., ​β(​s ˆ ​)  < ​ s ˆ ​​. This implies that for any possible ​​s ˆ ​​, 
the cutoff strategy ​​s ˆ ​​ cannot constitute an equilibrium. However, if ​α  ≥ ​ α​​ ∗​​, then it 
follows from continuity of ​G (x, α)​ that there exists a cutoff strategy for which ​β(​s ˆ ​) 
= ​ s ˆ ​​. ∎

There are two forces influencing this result: (i) the public news of viability and 
(ii) a small mass of agents.
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The News Effect.—As we have already highlighted, PNV makes agents more 
optimistic about the survival of the regime. For any survival criteria ​​θ ˆ ​​, the private 
signal realization ​​I​​ v​(​θ ˆ ​)​ that makes agents indifferent between attacking and not 
attacking, is lower than that in the absence of any viability test. To observe this, 
consider the signal ​I(​θ ˆ ​)​ that makes an agent indifferent between attacking and not 
attacking when there is no viability test; ​I(​θ ˆ ​)​ must satisfy

(I)	​​ 
​∫ 
​θ ˆ ​
​ ​θ – ​​​ π​(θ)​ f ​(​√ _ τ ​ ​(I​(​θ ˆ ​)​ − θ)​)​ dθ

   _____________________   
​∫ ​θ _​​ ​θ 

– ​​​ π​(θ)​ f ​(​√ _ τ ​ ​(I​(​θ ˆ ​)​ − θ)​)​ dθ
 ​  =  p​.

It follows from log-concavity of ​f​ that the LHS of condition (​I​) (or (​​I​​ v​​ )) is increas-
ing in the required cutoff signal ​I(​θ ˆ ​)​ (or ​​I​​ v​(​θ ˆ ​)​). Compared with condition (​​I​​ v​​ ), the 
denominator on the LHS of condition (​I​ ) is larger. Thus, it is easy to see that the 
required cutoff signal ​​I​​ v​(​θ ˆ ​) ≤  I(​θ ˆ ​)​. By the same logic, one can easily check that the 
required cutoff signal ​​I​​ v​(​θ ˆ ​)​ and ​I(​θ ˆ ​)​ increase with the required fundamental strength ​​θ ˆ ​​.

The Group Size Effect.—It directly follows from the aggregate condition (​​A​​ α​​) that a 
small group size ​α​ would make the success criterion ​A(​s ˆ ​, α)​ lower, given any ​​s ˆ ​​.

The Combined Effect.—Combining the two forces, we can say that for any ​​s ˆ ​​, a 
smaller group size ​α​ translates into a lower ​A(​s ˆ ​, α)​ and in that case, PNV lowers 
​β (​s ˆ ​)  = ​ I​​ v​(A(​s ˆ ​, α))​, which is the cutoff signal that makes an agent indifferent 
between attacking and not attacking. If the group size ​α​ is sufficiently small, this 
combined effect is so significant that for any ​​s ˆ ​​, ​β (​s ˆ ​)  < ​ s ˆ ​​.

Figure 1 explains this combined effect graphically. We use the uniform prior 
and triangle probability density of error: ​​ f ˆ ​ (x)  ≔  (2 + 4x)1(−0.5  ≤  x  <  0) +  
(2 − 4x)1(0  ≤  x  ≤  0.5)​.12 Consider any cutoff per capita fundamental ​x​. As 
defined in equation (G), ​G(x, α)​ is the belief of the marginal agent that the regime 
will survive. Figure 1 plots this belief against any candidate cutoff ​x  ∈  [0, 1]​. Under 
a degenerate policy ​G(x, α)​ is the ​45°​ line and hence at the cutoff per capita funda-
mental ​x  =  p​, the agent with the cutoff signal is indifferent. Thus, under a uniform 
prior, in the absence of PNV, a small group size does not affect the equilibrium per 
capita fundamental cutoff.

We can see that PNV pushes this belief upward. As ​α​ decreases, ​G(x, α)​ increases. 
However, under the general prior, this monotonicity may not hold. Nevertheless, 
since ​G(x, α)​ uniformly converges to ​1​, there is an ​​α​​ ∗​​ such that for ​α  < ​ α​​ ∗​​, 
​G(x, α)  >  p​ for all ​x​. This implies that the only possible cutoff solution is ​x  =  0​ 
and the implied unique equilibrium is that in which no one attacks a viable regime.

A Lower Bound.—In the following section, we consider frequent viability tests 
that induce a dynamic setting. Constructing the belief of the marginal agent in this 
dynamic setting will be more involved. Below, we construct a lower bound ​​ G _ ​(x, α)​ 

12 Note that the error distribution ​​F ˆ ​​ is log-concave, and under a uniform prior, this is enough to guarantee that 
for any ​A  >  B​, the posterior belief ​Pr(θ  ≥  A | s, θ  ≥  B)​ is increasing in ​s​.
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on the belief ​G(x, α)​ of the marginal agent. This lower bound will be useful in the 
dynamic setting. Let us define

(​​ G _ ​​)	​​  G _ ​​(x, α)​  ≔  1 − ​(​ ​π – ​ ​f –​
 ___ ​π _​  ​ f _ ​
 ​)​​

(
​  α x  ________________   
α x + ​ 1 _ ​√ _ τ ​ ​​(​F​​ −1​​(x)​ + ​ 1 _ 2 ​)​

 ​
)

​​

for ​x  >  0​ and ​​ G _ ​(0, α)  =  1​. It is clear that for any ​x  >  0​,13

	​ G​(x, α)​  ≥  1 − ​ 
​∫ 0​ 

α x​​ ​π – ​ ​f –​ dθ
  ________________  

​∫ 0​ 
α x+​ 1 _ ​√ _ τ ​ ​​F​​ −1​​(x)​+​  1 _ 2​√ _ τ ​ ​​​ ​π _​  ​ f _ ​ dθ

 ​  = ​  G _ ​​(x, α)​​,

and ​G(x  =  0, α)  = ​  G _ ​(x  =  0, α)  =  1​.

COROLLARY 1: There exists ​​α ˆ ​  ∈  (0, ​α​​ ∗​]​ such that whenever ​α  < ​ α ˆ ​​, ​G(x, α) 
≥ ​  G _ ​​(x, α)​  >  p​ for all ​x  ∈  [0, 1]​.

The Corollary 1 directly follows from the same argument as in Lemma 1 since 
​​ G _ ​(x, α)​ also uniformly converges to ​1​ as ​α  →  0​. Note, ​​α ˆ ​  ≤ ​ α​​ ∗​​ because ​α  < ​ α​​ ∗​​ 
serves as the necessary and sufficient condition for Lemma 1 while ​α  < ​ α ˆ ​​ is only 
the sufficient condition. In other words, ​​α ˆ ​​ qualifies as a group size that is small 
enough to be dissuaded from attacking the regime by a viability test.

III.  Main Result: Frequent Viability Tests

We understand that positive viability news can dissuade a sufficiently small 
mass of agents from attacking. Now, let us return to the frequent viability tests: a 

13 Note that, for any cutoff strategy ​​s ˆ ​  ∈  ​[− ​  1 _ 2 ​√ _ τ ​ ​, 1 + ​  1 _ 2 ​√ _ τ ​ ​)​​, the effective upper bound for the integral is ​​
s ˆ ​ + ​  1 _ 2 ​√ _ τ ​ ​​ instead of ​​θ – ​​.

Figure 1. ​G(x, α)​ When ​{​θ _​, ​θ –
 ​ } =  {−1, 2}​, ​τ =  1​, ​π(θ )​ Is Uniform and ​f = ​ f ˆ ​​
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diffused policy ​J​. There can be multiple cutoff equilibria. We relegate the full 
characterization of cutoff equilibria for any diffused policy ​J​ to the online Appendix. 
The following numerical example shows all possible cutoff equilibria for ​J  =  2​.

NUMERICAL EXAMPLE 1: In Table 1, the first equilibrium is the one in which 
no agent attacks a viable regime (​​​s ˆ ​​1​​  = ​​ s ˆ ​​2​​  =  −σ/2​). Thus, ​​θ ˆ ​  =  0​. Similar to 
the one-time viability test, this remains a possible equilibrium outcome. There 
are two equilibria (​2​ and ​3​), in which no agent in group ​2​ attacks a regime 
if the regime passes the second viability test (​​​s ˆ ​​2​​  = ​​ θ _​​1​​ − (σ/2​)). Thus, if the 
regime passes the second viability test, it survives (​​​θ _​​1​​  = ​ θ ˆ ​​). It is also possible  
(equilibrium ​4​ and ​5​) that agents in both group ​1​ and ​2​ attack a viable regime.

It is easy to see that for any diffused policy ​J​, one can always construct a cutoff 
equilibrium in which for some ​j  =  1, 2, …, J​, no agent attacks the regime after 
the regime passes the ​j​th viability test. Thus, the regime that passes the ​j​th via-
bility test continues to be viable until the end. However, if an agent believes that 
others may attack a regime even after it passes the viability tests, then he may do 
the same: particularly if this agent has received a very low private signal; hence, 
multiple cutoff equilibria may arise. Nevertheless, we argue that when the princi-
pal adopts a sufficiently diffused policy, the only possible cutoff equilibrium is the 
one in which all agents follow the principal’s recommendation and do not attack 
a viable regime.

THEOREM 1: A diffused policy ​J​ with ​J  > ​ J ˆ ​  =  1/​α ˆ ​​ is persuasive.

Consider the case in which group ​j​ agents learn that the regime has passed the ​j​th 
viability test and decide whether to attack the regime. When ​J  > ​ J ˆ ​​, there are less 
than ​​α ˆ ​​ mass of agents in group ​j​. Recall from Corollary 1 that a viability test can be 
persuasive if the mass of agents is smaller than ​​α ˆ ​​. However, there are two crucial 
differences in this dynamic case. First, whether the regime can pass the ​j​th viability 
test depends on ​θ​ as well as past attacks. Thus, the interpretation of the positive 
viability news is history-dependent. To observe this, note that the viability test dis-
closes whether ​θ  ≥ ​​ θ _​​j−1​​​, where ​​​θ _​​j−1​​​ is endogenous. Second, although only ​α​ mass 
of agents are moving, ​​(1 − j α)​​ mass of agents will move later, and the regime may 
fail if agents in the subsequent groups attack. Thus, the effectiveness of ​j​th viability 
test is dependent upon the effectiveness of future viability tests.

However, we build on Lemma 1 and Corollary 1, and argue that the following 
statement is true for any ​j​, in particular for ​j  =  0​.

Table 1—Cutoff Equilibria for ​J = 2​

Equilibrium ​​​s ˆ ​​1​​​ ​​​s ˆ ​​2​​​ ​​​θ ¯ ​​1​​​ ​​θ ˆ ​​
​1​ ​− 0.50​ ​− 0.50​ ​0​ ​0​
​2​ ​− 0.26​ ​− 0.46​ ​0.04​ ​0.04​
​3​ ​0.46​ ​− 0.15​ ​0.35​ ​0.35​
​4​ ​0.77​ ​0.72​ ​0.46​ ​0.66​
​5​ ​0.57​ ​0.29​ ​0.39​ ​0.46​

 Note: Parameter values: ​τ = 1​, ​p = 0.7​, ​π​ is uniform in [−1, 2] and ​f = ​ f ˆ ​​.
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​​M​j​​​: When the agents in any group ​j′  >  j​ learn that the regime has passed the ​j′​ th 
viability test (regardless of whichever cutoff strategy was played by others in the 
past), any cutoff strategy in which an agent in group ​j′​ may attack violates sequential 
rationality.

As we only consider cutoff strategies, we sometimes refer to the statement above 
as “no agent in group ​j′  >  j​ attacks a regime that passes the ​j′​ th viability test.” The 
theorem claims that when ​J  > ​ J ˆ ​​, ​​M​0​​​ is true. We prove this using the induction 
argument; regardless of history, the agents in any group ​j​ follow the principal’s rec-
ommendation, if they believe that the agents in the subsequent groups will do the 
same. Formally speaking,

​​N​j​​​: If ​​M​j​​​ is true, then ​​M​j−1​​​ is true.

Step A:

LEMMA 2: If ​α  < ​ α ˆ ​​, then ​​N​1​​​ is true.

It directly follows from Corollary 1 that when ​α  < ​ α ˆ ​​, for any possible cut-
off strategy ​​​s ˆ ​​1​​​, the marginal agent with private signal ​​s​i​​  = ​​ s ˆ ​​1​​​ believes that 
the regime will withstand the current attacks with a probability strictly higher 
than ​p​. If the regime withstands the current attacks, then it will pass the next 
test. Given that ​​M​1​​​ is true, this means that the agent believes the regime will 
survive with a probability strictly higher than ​p​. Hence, the agent prefers not 
attacking. Thus, any cutoff strategy in which an agent in group ​1​ attacks the 
regime that passes the first viability test, violates sequential rationality, i.e., 
​​M​0​​​ is true.

Step B: The difference between the agents in the first group and those in the later 
groups is that the result of the viability test for group ​j >  1​ is history-dependent. 
However, the following lemma shows that ​​ G _ ​(x, α)​ (as defined in the equation (​​ G _ ​​)) 
serves as a lower bound to the belief of the marginal agent in group ​j​ as well regard-
less of ​​​θ _​​j−1​​​. Thus, given that ​​M​j​​​ is true, independent of history, i.e., the cutoff strate-
gies played by the agents before group ​j​, the positive viability news is also persuasive 
for agents in group ​j​.

LEMMA 3: If ​α  < ​ α ˆ ​​, then ​​N​j​​​ is true for any ​j  >  1​.

PROOF:
Suppose that an agent in group ​j​ believes that the agents in group ​l  <  j​ have 

played some cutoff strategy ​​​s ˆ ​​l​​​ for ​l  =  1, 2, …, (  j − 1)​. Then, the regime will pass 
the ​j​th viability test if

(4)	​​  ∑ 
l=1

​ 
j−1

​​ αF​(​√ _ τ ​ ​(​​s ˆ ​​l​​ − θ)​)​  ≤  θ​.
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For any cutoff strategies the agents may have played in the past, PNV means ​
θ  ≥ ​​ θ _​​j−1​​​, where ​​​θ _​​j−1​​​ solves condition (4) with equality.14

Suppose that the agents in group ​j​, follow a cutoff strategy ​​​s ˆ ​​j​​​. Let us define 
​​A​j​​ (​​s ˆ ​​j​​, α, ​​θ _​​j−1​​)​ such that

(​​A​ j​ 
α​​)	​ ​A​j​​​(​​s ˆ ​​j​​, α, ​​θ _​​j−1​​)​  = ​​ θ _​​j−1​​ + αF​(​√ _ τ ​ ​(​​s ˆ ​​j​​ − ​A​j​​ ​(​​s ˆ ​​j​​, α, ​​θ _​​j−1​​)​)​)​​.

Unless ​θ  ≥ ​​ θ _​​j−1​​​, the regime will not pass the ​j​th viability test. Given the cutoff 
strategy ​​​s ˆ ​​j​​​, the second term on the RHS captures the aggregate attack from group ​j​ 
when ​θ  = ​ A​j​​​. Based on the condition (​​A​ j​ α​​), if ​θ  ≥ ​ A​j​​​, the regime will pass  
the ​j​ th viability test and then sustain the attack from group ​j​.15

Given ​​M​j​​​ is true, this means whenever ​θ  ≥ ​ A​j​​​, the regime survives.
The marginal agent in group ​j​ with signal ​​​s ˆ ​​j​​​ believes that the regime will survive 

with probability at least

	​ Pr ​(θ  ≥ ​ A​j​​  |  ​​s ˆ ​​j​​, θ  ≥ ​​ θ _​​j−1​​)​  = ​ 
​∫ ​A​j​​​ 

​θ 
–
 ​ ​​ π​(θ)​ f ​(​√ _ τ ​ ​(​​s ˆ ​​j​​ − θ)​)​ dθ

   __________________   
​∫ ​​θ _​​j−1​​​ 

​θ 
–
 ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(​​s ˆ ​​j​​ − θ)​)​ dθ

 ​​.

Substituting the aggregate condition (​​A​ j​ α​​), we can write the marginal agent’s belief as

	​​ 
​∫ ​A​j​​​ 

​θ 
–
 ​ ​​ π​(θ)​ f ​(​√ _ τ ​ ​(​A​j​​ − θ)​ + ​F​​ −1​​(​ 

​A​j​​ − ​​θ _​​j−1​​ ______ α ​ )​)​ dθ
    _______________________________     

​∫ ​​θ _​​j−1​​​ 
​θ 
–
 ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(​A​j​​ − θ)​ + ​F​​ −1​​(​ 

​A​j​​ − ​​θ _​​j−1​​ ______ α ​ )​)​ dθ
 ​​.

Substituting the per capita required cutoff strength for agents in group ​j​ to pass the 
next test as ​x  =  (​A​j​​ − ​​θ _​​j−1​​)/α​, we get that belief of the marginal agent with sig-
nal ​​​s ˆ ​​j​​  =  (1/​√ _ τ ​ ) ​F​​ −1​(x) + α x + ​​θ _​​j−1​​​ is

(5)	​​ 
​∫ ​​θ _​​j−1​​+αx

​ ​θ 
–
 ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(αx − θ)​ + ​F​​ −1​​(x)​ + ​√ _ τ ​ ​​θ _​​j−1​​)​ dθ

     _____________________________________     
​∫ ​​θ _​​j−1​​​ 

​θ 
–
 ​  ​​ π​(θ)​ f ​(​√ _ τ ​ ​(αx − θ)​ + ​F​​ −1​​(x)​ + ​√ _ τ ​ ​​θ _​​j−1​​)​ dθ

 ​ ​.

14 Given the strategic complementarity, it follows from the Milgrom and Roberts (1990) argument that the 
unique cutoff equilibrium in Lemma 1 means it is the unique rationalizable strategy. However, under the endoge-
nous information disclosure, if the agents in the past were attacking more aggressively, then surviving those attacks 
means the regime is likely to be strong. This, in turn, gives an incentive to the agents to not attack, and thus, the 
strategic complementarity may be violated. Therefore, the same generalization to rationalizable strategy may not 
hold for Lemma 3, and the existence of nonmonotone equilibria is an open question for future research.

15 Note that ​θ  ≥  ​A​j​​​ is sufficient for the regime to pass the ​​(  j + 1)​​th viability test. It is not necessary. 
If ​θ  =  ​A​j​​  >  ​​θ _​​j−1​​​, then the aggregate past attack is strictly lower than ​​​θ _​​j−1​​​ (unless ​​​θ _​​j−1​​  =  0​). Thus, at ​θ  =  ​A​j​​​, 
the aggregate attack is less than the right-hand side of the equation (​​A​ j​ α​​). 
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Note that if ​​​θ _​​j−1​​  =  0​ (as in Lemma 2), then this belief is equal to ​G(x, α)​ as defined 
in equation (G). Since ​π​ and ​f​ are bounded away from ​0​, for ​x  >  0​, the belief of the 
marginal agent ​​​s ˆ ​​j​​​ is at least

	​ 1 − ​ 
​∫ ​​θ _​​j−1​​​ 

​​θ _​​j−1​​+αx
​​ ​π – ​ ​f 

–
​ dθ
  __________________   

​∫ ​​θ _​​j−1​​​ 
​​θ _​​j−1​​+αx+​ 1 _ ​√ _ τ ​ ​​ F​​ −1​​(x)​+​  1 _ 2​√ _ τ ​ ​​​ ​π _​  ​ f _ ​ dθ

 ​  =  1 − ​(​ ​π – ​ ​f 
–
​
 ___ ​π _​  ​ f _ ​
 ​)​​

(
​  αx  ________________   
αx + ​ 1 _ ​√ _ τ ​ ​​(​F​​ −1​​(x)​ + ​ 1 _ 2 ​)​

 ​
)

​

	 = ​  G _ ​​(x, α)​​,

while for ​x  =  0​, the belief of the marginal agent ​​​s ˆ ​​j​​​ is ​1​.
Therefore, for ​α  < ​ α ˆ ​​ (as in Corollary 1), given ​​M​j​​​ is true and given any possible 

fundamental cutoff ​​​θ _​​j−1​​​, for any cutoff strategy ​​​s ˆ ​​j​​​, the marginal agent with cutoff 
signal ​​​s ˆ ​​j​​​ believes that the regime survives (or ​θ  ≥ ​ A​j​​ (​​s ˆ ​​j​​, α, ​​θ _​​j−1​​)​) with probability 
strictly higher than ​p​. This implies ​​M​j−1​​​ is true. ∎

Step C: Note that ​​M​J​​​ is trivially true since there is no attack after the last group. If 
the mass of agents in each group satisfies ​α  < ​ α ˆ ​​, by induction, we can show that in 
any cutoff equilibrium, no agent will ever attack a viable regime. When the principal 
runs the viability tests with sufficient frequency, the agents are assured that no agent 
will attack when the regime passes the next viability test (​​M​j​​​ is true) . This makes 
the current positive viability news persuasive (​​N​j​​​ is true). Thus, under a sufficiently 
diffused policy (​J  > ​ J ˆ ​​ ), the coordination risk unravels from the end. This proves 
our main result in Theorem 1.

Frequent Viability Test versus Stress Test.—Inostroza and Pavan (2018) and 
Goldstein and Huang (2016) propose a one-time “stress test” policy: the regime 
passes the stress test only if ​θ  ≥  k​ for some ​k​. The authors demonstrate that if the 
stress test is sufficiently tough ​k  > ​ k ˆ ​​, then no agent will attack the regime that passes 
the stress test even in the cutoff equilibrium where agents attack most aggressively. 
In contrast, our paper considers frequent tests with the weakest possible strength or 
frequent viability tests. Although a one-time viability test may not be sufficiently 
“tough,” when the principal runs the tests with sufficient frequency, it can dissuade 
agents from attacking a viable regime.

Any viable regime survives when viability tests are repeated with sufficient fre-
quency. In contrast, under a one-time stress test with ​k  > ​ k ˆ ​​, a viable regime whose 
strength is below ​k​ fails. Thus, from an ex ante perspective, the principal benefits 
from adopting a sufficiently frequent viability test policy compared with a suffi-
ciently tough one-time test policy when the agents move sequentially. Furthermore, 
unlike the viability test, the stress test policy violates ex post incentive compatibil-
ity; if the principal misreports that the regime has passed the test when ​θ  ∈  [0, k)​, 
then the agents will not attack and the regime will survive. This is not so for viability 
tests; if the regime fails a viability test, then the principal cannot benefit from mis-
reporting it.16

16 Thus, implementing a stress test policy requires commitment power as is standard in the Bayesian persuasion 
literature . Implementing viability tests do not require such commitment power. However, if repeating the tests are 
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IV.  Application: Asynchronous Debt Structure

Consider a standard maturity mismatch problem, in which a borrower finances a 
long-term illiquid investment project by short-term debt contracts. Creditors may not 
roll over the short-term debts if they believe others will not do so. Hence, borrowers 
with reasonable sound fundamental may fail due to coordination failure among cred-
itors in rolling over their debt. Any financial institution that performs liquidity trans-
formation, e.g., commercial banks, hedge funds, and mutual funds, could be exposed 
to such panic-based runs. Brunnermeier (2009) argues that this coordination risk 
resulting from the maturity mismatch is a primary cause of the recent financial crisis.

Asynchronous debt structures that prevent creditors from withdrawing simulta-
neously are fairly common (see He and Xiong 2012). Choi, Hackbarth, and Zechner 
(2018) provides empirical evidence that corporate bond issuers diversify debt roll-
overs across dates; they find that there is a significant increase in maturity dispersion 
for firms facing high rollover risk. Hedge funds and mutual funds are also allowed 
to lift redemption gates to limit momentary liquidity outflows.17 We are seeking a 
theoretical rationale behind the asynchronous debt structure.

Let us consider a stylized model in which there is a unit mass of creditors, and each 
of them has lent ​1​ unit to the borrower. The borrower uses this funding to finance 
some illiquid investment. An asynchronous debt structure ​J​ ensures only ​α  =  1/J​ 
proportion of debt matures at time ​(  j − 1)α​ for ​j  =  1, 2, …, J​. If the borrower 
fails to service the debt at any of these maturity dates, she must go through the 
bankruptcy process, which is public information to all creditors. This enforces the 
disclosure of the borrower’s viability at each maturity date. Hence, the debt struc-
ture ​J​ is equivalent to the policy ​J​ we introduced in Section I.18

The asynchronous debt structure separates creditors into groups according to dis-
persed maturity dates. Group ​j​ creditors refers to the creditors who decide whether 
to withdraw (​​a​i​​  =  1​), or roll over the debt (​​a​i​​  =  0​) at time ​(  j − 1)α​. The return 
from the illiquid investment ​R​ is realized at time ​1​. The variable ​θ​ indicates the 
liquidity position of the borrower. The borrower can use the liquid assets and the 
access to the extra funding source to sustain total withdrawals up to ​θ​.19

The information environment is assumed to be the same as that described in 
Section I. The borrower chooses the debt maturity structure ​J​ prior to ​θ​ being real-
ized. Thus, the debt structure itself does not provide information about ​θ​.20 All cred-
itors know the maturity date of their debt as well as the overall debt structure. Let ​​w​j​​​ 

costly, then this may not be the case. It is important that the agents do not doubt that the principal will stop con-
ducting the tests in the future.

17 The redemption gates policy forces investors to make withdrawals asynchronously. Hedge fund managers can 
lift investor-level gates to limit investors’ redemptions within a certain period. A common investor-level gate limits 
redemptions to 25 percent of an investor’s money each quarter over four quarters (see Alistair Barr, "Hedge Funds 
Try New Way to Avoid Big Redemptions," MarketWatch, June 10, 2010). On October 14, 2014, SEC Rule 2a-7 was 
amended to enable managers of Money Market Mutual Funds to set redemption gates within a certain period during 
which a fund’s liquidity position is unfavorable.

18 We do not model the ex ante lending decision; rather, we focus on analyzing the rollover problem. However, 
ceteris paribus, if the borrower is less likely to default, then the creditors will be more willing to lend in the first 
place. Thus, such modification will only reinforce our result.

19 The determination of the borrower’s liquidity position ​θ​ is outside of the model. Note, ​θ​ may be negative if 
the liquidity outflow is high, due to the borrower’s business operations and/or derivative positions, for example. 

20 If the borrower only undertakes such a debt structure in times of distress, then this may defeat the purpose 
of the policy.
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be the proportion of group ​j​ creditors who decide to withdraw. Given the debt struc-
ture ​J​, group ​j​ creditors know whether the borrower is still viable at time ​(  j − 1)α​, 
i.e., ​θ  ≥  α​∑ l=1​ 

j−1
 ​​ ​w​l​​​.

If the borrower cannot service the withdrawal before time ​(  j − 1)α​, she defaults 
and all creditors whose debt matures after that time have no chance to make the 
withdrawal and obtain ​0​. Below, we describe the payoff for group ​j​ creditors when 
the borrower is still viable at time ​(  j − 1)α​.

By rolling over the debt, a group ​j​ creditor gets ​1 + r  <  R​ if the borrower can 
service all the withdrawals up to time ​1​; otherwise, the borrower obtains ​0​:

	​ u​(0, θ, ​​{​w​l​​}​​ l=1​ J  ​)​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
1 + r

​ 
if θ  ≥  α​ ∑ 

l=1
​ 

J

  ​​ ​w​l​​
​  

0

​ 
if θ  <  α​ ∑ 

l=1
​ 

J

  ​​ ​w​l​​
​​​ .

Upon withdrawal, the creditor gets his principal back at time ​(  j − 1)α​ if the bor-
rower can sustain the withdrawal from group ​j​, i.e., ​θ ≥ α​∑ l=1​ 

j  ​​ ​w​l​​​. Otherwise, the 
borrower defaults instantly, and the withdrawing creditors in group ​j​ split the remain-
ing liquid assets ​​θ​j​​​.21 Thus, the payoff for group ​j​ creditors from withdrawal is

	​ u​(1, θ, ​​{​w​l​​}​​ l=1​ 
j  ​)​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
1
​ 

if θ  ≥  α ​ ∑ 
l=1

​ 
j

  ​​ ​w​l​​
​   

​ θ − α ​∑ l=1​ 
j−1 ​​  ​w​l​​  ___________ α ​w​j​​ ​

​ 
if θ  <  α ​ ∑ 

l=1
​ 

j

  ​​ ​w​l​​
​​​ .

This payoff specification is different from that which is introduced in Section I. 
The payoff from rolling over depends on whether the borrower can sustain all 
withdrawals to time ​1​, while that from withdrawing only depends on whether the 
borrower can withstand the withdrawal from the current group. This asymmetry in 
payoff may increase the incentive for creditors to withdraw. Moreover, unlike in 
Section I, the payoff from withdrawing is not constant when the borrower defaults. 
This payoff specification is similar to that presented in Goldstein and Pauzner 
(2005); their specification indicates that the payoff from withdrawing is negatively 
dependent on aggregate withdrawal.22

The following proposition shows that, despite these differences, when the borrower 
adopts a sufficiently asynchronous debt structure, the public information of the bor-
rower’s continued viability, i.e., success in rolling over debt maturing early, can avert 
panic-based runs altogether.

PROPOSITION 1: A sufficiently asynchronous debt structure eliminates the risk of 
panic-based debt runs.

21 For simplicity, we assume that the long-term illiquid investment has no liquidation value before it matures and 
the borrower cannot borrow against the return ​R​.

22 We adopt this payoff specification for simplicity. We prove our result for a more general payoff structure. One 
can easily accommodate any reasonable payoff specification for withdrawing and rolling over when the borrower 
defaults.
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Our result is robust to the case when payoff from attacking (or withdrawal) is inde-
pendent of future attacks because we prove our main result using the statement ​​M​j​​​ 
inductively, i.e., no one withdraws if the borrower remains viable after group ​j​ cred-
itors had made their decisions. Thus, the asymmetry disappears since under ​​M​j​​​; so 
long as the borrower can service the current withdrawal, no future withdrawal will 
occur (​​w​l​​ =  0​ for all ​l >  j​ ). Accommodating a general payoff structure broadens 
the scope of applying our proposed policy. Although the payoffs depend on both the 
fundamental and withdrawals, we can always find a threshold ​​p – ​ <  1​ such that a 
creditor never withdraws if he believes that probability of no default is higher than ​​
p – ​​ so long as the payoffs are bounded. Thus, a sufficiently asynchronous debt structure 
with ​J >  1/​α ˆ ​( ​p – ​, τ)​ eliminates the chance of panic-based runs.

V.  Discussion

Applying our theory to debt run provides a rationale for why borrowers often 
adopt asynchronous debt structures in practice. The insight also applies to regime 
change game in general (under more general payoff structure than that specified 
in Section I). In this section, we consider some variations of our setup to under-
stand what could make it more or less difficult to dissuade agents from attacking. 
Moreover, to identify the essential features of the setup without which such per-
suasion may not be possible. First, let us consider the policy in which the principal 
discloses all information to the agents.

A. Full Disclosure

Suppose that the principal knows the underlying fundamental and discloses the 
true ​θ​ at the beginning. Furthermore, she discloses the information regarding past 
attacks with high frequency. Under such environment, when ​θ  <  1​, it is easy to see 
that there exists an equilibrium in which all agents attack regardless of the history. 
Hence, any regime with ​θ  <  1​ cannot survive.

Note that in our setting, an agent cannot make a difference in the aggregate attack 
by unilateral deviation. If this is not the case, full disclosure will lead to a very differ-
ent result. Let us assume that attacking is the payoff-dominant action, i.e., ​​b​1​​  < ​ b​0​​​. 
This means the agents’ incentives are not aligned with the principal, and this is pos-
sible in practice. Consider, for example, a currency attack game as that presented 
in Morris and Shin (1998): attacking is costly but would be profitable if agents can 
coordinate (​​b​0​​  >  0, ​c​1​​  <  0​), while not attacking has zero payoff (​​b​1​​  = ​ c​0​​  =  0​). 
In this case, attacking the regime of fixed exchange rate is the payoff-dominant 
action, but the policy designer may have incentive to defend it.

Consider the following simple example. Two agents are moving sequentially, 
one agent is equivalent to half mass, and the principal discloses all the information 
about ​θ​ and the past attack, regardless of whether the first agent has attacked. Suppose 
that ​θ  ∈  (1/2, 1)​.23 Then, the second agent will attack if the first agent attacks 
(​​b​0​​  > ​ b​1​​​) and will not attack if the first agent does not attack (​​b​1​​  > ​ c​1​​​). Since 

23 The argument for ​θ  <  1/2​ is straightforward because attacking is the dominant action for the first agent. 
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attacking is the payoff-dominant action (​​b​0​​  > ​ b​1​​​), the first agent attacks. Thus, it 
follows from backward induction that both agents will take the payoff-dominant 
action: attack. This simple example demonstrates that full disclosure may fail to 
dissuade agents from attacking. Thus, even if full disclosure is a feasible policy, the 
principal may not want to adopt such a policy.

The result that agents play the payoff-dominant action even generalizes to 
repeated games. In contrast with the folk theorem results, Dutta (2012) (see also 
Lagunoff and Matsui 1997) shows that if this coordination game is repeated (finitely 
but sufficiently many times), and agents alternately get chances to revise their deci-
sions, then the agents will soon move to playing the payoff-dominant action regard-
less of the current state.

In contrast, our selective partial disclosure policy is persuasive regardless of whether 
attacking is the payoff-dominant action. If attacking is the payoff-dominant action, 
then it may be more difficult to dissuade the agents from attacking. Let us now move to 
the comparative statics and examine the factors that makes persuasion more difficult.

B. Comparative Statics

We have shown that a sufficiently diffused policy is persuasive. However, whether 
a diffused policy ​J​ qualifies as a sufficiently diffused policy depends on the model 
parameters. In our simple model, two parameters in which we are interested are ​p​ 
(reluctance) and ​τ​ (precision). We may expect that if the agents are more reluctant 
to follow when the principal recommends that they do not attack, it will be more 
difficult to persuade them. Furthermore, if the agents have more precise signals, it 
will be more difficult to persuade them to ignore their private signals.

It is easy to see that ​​ G _ ​(x, α; τ)​ is decreasing in ​α​ and ​τ​. This in turn implies that ​​
α ˆ ​( p, τ)​ is decreasing in ​p​ and ​τ​.24 However, this does not exactly capture that the 
principal must diffuse more when ​p​ or ​τ​ is higher. It is because ​​J ˆ ​​ is only a sufficient 
threshold, i.e., even if ​J  < ​ J ˆ ​( p, τ)​, the diffused policy can be persuasive. However, 
under the uniform prior, we can provide a tight bound, i.e., a necessary and sufficient 
threshold for ​J​. The following proposition describes the comparative statics results 
under the uniform prior.

PROPOSITION 2: Under the uniform prior, there exists ​​J​​ ∗​( p, τ)​ such that a diffused 
policy is persuasive if and only if ​J  > ​ J​​ ∗​( p, τ)​, where

	 (i)	 for ​p′  ≥  p​, ​​J​​ ∗​( p′, τ)  ≥ ​ J​​ ∗​( p, τ)​, and

	 (ii)	 for ​τ ′  ≥  τ​, ​​J​​ ∗​( p, τ ′ )  ≥ ​ J​​ ∗​( p, τ)​.25

The result that ​​J​​ ∗​( p, τ)​ is not only sufficient but also necessary, follows from the 
fact that under the uniform prior, the belief of the marginal agent in group ​j​ regarding 

24 Consider, for example, ​p′  ≥  p​. If ​α  <  ​α ˆ ​ ( p′, τ)​, then ​​ G _ ​(x, α; τ)  >  p′  >  p​ for all ​x  ∈  [0, 1]​. Hence, 
​​α ˆ ​( p′, τ)  ≤  ​α ˆ ​( p, τ)​.

25 Given the support of the prior, we can only compare ​τ​ and ​τ′​, which are not too small, i.e., ​1/​√ _ τ ​′  <  1/​√ _ τ ​ 
<  min { ​θ 

–
 ​ − 1, −​θ _​}​.
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the survival of the regime (as defined in (G)) is decreasing in the group size ​α​ for 
any given ​​​θ _​​j−1​​​.

This implies that when ​p​ is higher, a smaller group size, or equivalently, higher 
diffusion is required to make ​G(x, α; τ)  >  p​ for all ​x  ∈  [0, 1]​. If ​​b​1​​  < ​ b​0​​​, then an 
agent gets a higher payoff from attacking a regime that does not survive, as opposed 
to not attacking a regime that does survive. Thus, attacking is the payoff-dominant 
action, and the principal’s interest is not aligned with the agents (recall the currency 
attack example). If attacking is the payoff-dominant action (​​b​1​​  < ​ b​0​​​), then ​p​ is 
higher (see equation (2)). From the proposition above, it follows that it will be 
harder to dissuade the agents from attacking. Moreover, under the uniform prior, 
​G(x, α; τ)​ is also increasing in ​τ​. Therefore, persuading the agents with more precise 
private signals to ignore their private information and follow the principal’s recom-
mendation requires higher diffusion.

In our basic setup, we consider a regime change game in which agents have noisy 
private information as is standard in global game literature. Suppose that the noisy 
information was public; thus, agents share a homogeneous belief over ​θ​. Below, we 
argue that in such an environment, it is possible that no diffused policy can dissuade 
the agents from attacking.

C. Homogeneous Belief

Consider the same setup as in Section I with the following modification. The 
agents receive a noisy public signal ​s  =  θ + σϵ​ instead of private signals. For sim-
plicity, let us assume the prior is uniform. The principal observes the public signal 
and announces the policy after learning ​s​. Conditional on the realized signal ​s​, the 
agents share a homogeneous belief over ​θ​. Under a homogeneous belief, the only 
way to dissuade agents from attacking is to convince them “even if others attack, the 
regime is very likely to survive .” Otherwise, there is always a possible equilibrium 
in which all the agents attack.

If ​s​ is sufficiently high such that ​Pr (θ  ≥  1 | s)  >  0​, then the agents believe 
that ​θ​ can be in the upper dominance region. The positive viability news is able to 
increase this probability to ​Pr (θ  ≥  1 | θ  ≥  0, s)​. The following proposition shows 
that if the tests are repeated with sufficient frequency (or ​J  > ​ J​​ ∗​(s)​), the proba-
bility that “​θ​ is in the upper dominance region” may be high enough to dissuade 
the agents from attacking a viable regime. It is clear that the lower the ​s​, the lower 
the ​Pr (θ  ≥  1 | s)​; consequently, it becomes more difficult to dissuade the agents 
from attacking. Thus, ​​J​​ ∗​(s)​ increases as ​s​ falls.

If ​s​ is sufficiently low, then ​Pr (θ  ≥  1 | s)  =  0​, i.e., the agents have a common 
belief that ​θ  <  1​. This implies that the agents share the common belief that if all 
the agents attack, then the regime cannot survive. Thus, regardless of the frequency 
of the viability tests, all attack is a possible equilibrium.

In contrast, under heterogeneous beliefs, there is a uniform ​​J​​ ∗​​ such that no agent 
attacks regardless of the private signals. Even the agent who receives a private sig-
nal ​−σ/2​ and knows that ​θ =  0​ can be persuaded not to attack. The crucial differ-
ence with the heterogeneous belief case is as follows. Under heterogeneous beliefs, 
when ​θ​ is low, all the agents may privately learn that ​θ <  1​, but it is not a com-
monly held belief that ​θ < 1​. Agent ​i​ may entertain the possibility that other agents 
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believe ​θ ≥ 1​, or even if others do not believe so, they may entertain the possibility 
that others believe ​θ ≥  1​ and so on. Thus, the principal may not be able to convince 
an agent who receives a low private signal such as ​​s​i​​ = −σ/2​ that “even if others 
attack the regime is very likely to survive.” However, the principal may still be able to 
convince the agent that “others are not likely to attack .” Thus, the regime is likely to 
survive the attacks.

PROPOSITION 3: Under the information environment with the uniform prior and 
noisy public signal,

	 (i )	 a diffused policy can dissuade the agents from attacking only if the noisy pub-
lic signal ​s​ is sufficiently high such that ​Pr (θ  ≥  1 | s)  >  0​, and the required 
diffusion ​​J​​ ∗​(s)​ increases when ​s​ decreases.

	 (ii )	 If ​s​ is sufficiently small such that ​Pr (θ  ≥  1 | s)  =  0​, then no diffused policy 
can dissuade the agents from attacking.

	 (iii )	 From an ex ante perspective, for any ​θ  <  1​, there is a positive probability 
that (ii ) will happen.26

The results (i) and (ii) follow from the argument preceding the proposition. For 
(iii), note that when ​θ  <  1​, there is always a positive probability that the signal is 
so low that it becomes a common belief that ​θ  <  1​; thus, no diffused policy can 
dissuade the agents from attacking. There is always a possible equilibrium in which 
all agents attack. In this sense, a diffused policy cannot eliminate the coordination 
risk when agents have noisy public information. This shows that private information 
environment is essential for our result.

VI.  Conclusion

This paper proposes a simple policy called frequent viability tests that may be 
used to eliminate the strategic uncertainty in a global game of regime change. The 
frequent viability tests diffuse the coordination risk that would otherwise be concen-
trated at one point in time. We show that when the principal sufficiently diffuses the 
coordination risk, agents ignore their private information and follow the principal’s 
recommendation. The underlying mechanism is as follows. When the principal rec-
ommends the agent not to attack a regime that passes the viability test, and when the 
agents are assured that the agents in the subsequent groups will follow the princi-
pal’s recommendation (statement ​​M​j​​​), then a sufficiently small group of agents will 
follow the recommendation as well (argument ​​N​j​​​).

This result contributes to dynamic information design literature. From a meth-
odological perspective, our paper develops an inductive argument to show that the 

26 Under unbounded noise (for example, the Gaussian distribution), the impossibility in (ii) and (iii) go away. 
However, for any ​J​ (however large), we can always find ​s​ such that ​​J​​ ∗​(s)  >  J​. In this sense, although a diffused 
policy can work for any possible realization of public signal, the required diffusion can be unrealistically high.
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coordination risk unravels from the end. From an applied perspective, we show that 
a sufficiently asynchronous debt structure eliminates the possibility of panic.

Readers may wonder that, since the agents move sequentially, some exogenous 
shock may hit the fundamental or new information may arrive over time. In the 
online Appendix, we detail the robustness of our main result to such perturbations in 
the basic model. Within the scope of this paper, we refrain from discussing the effec-
tiveness of limited diffusion (when sufficient diffusion is not feasible) or optimal 
information disclosure under endogenous timing of attack. We believe that these are 
promising directions for future research.

Appendix

PROOF OF CLAIM 1:
First, we show that ​∃ x  ∈  [0, 1]​ such that ​G(x, ​α​​ ∗​) ≤  p​. Otherwise, it follows 

from uniform continuity that ​∃ δ >  0​ such that ​∀ α ∈  [​α​​ ∗​, ​α​​ ∗​ + δ )​, ​∀ x  ∈  [0, 1], 
G(x, α) >  p​. This implies ​​α​​ ∗​ + δ ∈ ​, which contradicts the fact that ​​α​​ ∗​ =  sup ​.

Consider the nontrivial case in which ​​α​​ ∗​  <  1​. For any ​​α​​ ∗∗​  > ​ α​​ ∗​​, by defini-
tion of ​​α​​ ∗​​, ​​α​​ ∗∗​  ∉  ​. Therefore, there exist ​​x​​ 0​  ∈  [0, 1]​ and ​​α​​ 0​  ∈  (0, ​α​​ ∗∗​ ]​ such 
that ​G(​x​​ 0​, ​α​​ 0​ )  ≤  p​. Let ​​A​​ 0​  = ​ x​​ 0​ ⋅ ​α​​ 0​  ∈  [0, ​α​​ 0​ ]​. Consider any ​​α​​ 1​  ≥ ​ α​​ 0​​ and 
take ​​x​​ 1​  = ​ A​​ 0​/​α​​ 1​​. Then, ​​x​​ 1​  ≤ ​ x​​ 0​​. Let us define the cutoff strategies ​​​s ˆ ​​​ 1​​ and ​​​s ˆ ​​​ 0​​ cor-
responding to ​​x​​ 1​​ and ​​x​​ 0​​ as in the aggregate condition (​​A​​ α​​). Then,

	​ ​​s ˆ ​​​ 1​  = ​  1 _ ​√ _ τ ​ ​ ​F​​ −1​​(​x​​ 1​)​ + ​A​​ 0​  ≤ ​  1 _ ​√ _ τ ​ ​ ​F​​ −1​​(​x​​ 0​)​ + ​A​​ 0​  = ​​ s ˆ ​​​ 0​​.

Therefore, it follows from log-concavity of ​f​ that

	​G​(​ ​A​​ 0​ _ 
​α​​ 1​

 ​, ​α​​ 1​)​  =  P​(θ  ≥ ​ A​​ 0​ ∣ ​​s ˆ ​​​ 1​, θ  ≥  0)​  ≤  P​(θ  ≥ ​ A​​ 0​ ∣ ​​s ˆ ​​​ 0​, θ  ≥  0)​  =  G​(​ ​A​​ 0​ _ 
​α​​ 0​

 ​, ​α​​ 0​)​​.

Thus, for any ​​α​​ 1​  ≥ ​ α​​ 0​​, there exists ​​x​​ 1​  ∈  [0, 1]​ such that ​G(​x​​ 1​, ​α​​ 1​) 
≤  G(​x​​ 0​, ​α​​ 0​ )  ≤  p​. In particular, for ​​α​​ 1​  = ​ α​​ ∗∗​​, there is some ​x  ∈  [0, 1]​ such that 
​G(x, ​α​​ ∗∗​)  ≤  p​. ∎

PROOF OF PROPOSITION 1:
Let us consider a general payoff structure for group ​j​ agents given the borrower 

has not failed yet, i.e., ​θ  ≥  α ​∑ l=1​ 
j−1 ​​​ w​l​​​, as follows:

	​ u​(0, θ, ​​{​w​l​​}​​ l=1​ J  ​)​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
​b​1​​​(θ, ​​{​w​l​​}​​ l=1​ J  ​)​

​ 
if θ  ≥  α ​ ∑ 

l=1
​ 

J

  ​​ ​w​l​​
​   

​c​0​​​(θ, ​​{​w​l​​}​​ l=1​ J  ​)​
​ 

if θ  <  α ​ ∑ 
l=1

​ 
J

  ​​ ​w​l​​
​​​;

	​ u​(1, θ, ​​{​w​l​​}​​ l=1​ J  ​)​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
​c​1​​​(θ, ​​{​w​l​​}​​ l=1​ J  ​)​

​ 
if θ  ≥  α ​ ∑ 

l=1
​ 

j

  ​​ ​w​l​​
​   

​b​0​​​(θ, ​​{​w​l​​}​​ l=1​ J  ​)​
​ 

if θ  <  α ​ ∑ 
l=1

​ 
j

  ​​ ​w​l​​
​​​.
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Let us define the net payoff from rolling over as opposed to withdrawal as 
​​u –​(θ, ​{​w​l​​}​ l=1​ J ​ )  ≔ ​ b​1​​(θ, ​{​w​l​​}​ l=1​ J ​ ) − ​c​1​​(θ, ​{​w​l​​}​ l=1​ J ​ )​ when the borrower remains viable 
until the end, and as ​​ u _ ​(θ, ​{​w​l​​}​ l=1​ J ​ )  ≔ ​ c​0​​(θ, ​{​w​l​​}​ l=1​ J ​ ) − ​b​0​​(θ, ​{​w​l​​}​ l=1​ J ​ )​ when the bor-
rower fails at time ​j α​ or after it.

ASSUMPTION 1: The payoff has the following properties:

	 (i )	 (Complementarity) ​​u –​( ⋅ )  ≥  0​ and ​​ u _ ​( ⋅ )  ≤  0​.

	 (ii )	 (Boundedness) There exist some finite numbers ​​ m _ ​, ​m – ​, ​ n _ ​  and  ​n –​​ such that ​
0  < ​  n _ ​  ≤ ​ u –​( ⋅ )  ≤ ​ n –​ and 0  < ​  m _ ​  ≤  −​ u _ ​( ⋅ )  ≤ ​ m – ​​.

The first part of the assumptions says that if the borrower is going to remain viable 
till time ​1​, then the agent is better off by rolling over, and if the borrower cannot 
withstand the withdrawal from group ​j​, then the agent is better off by withdrawing. 
This captures the strategic complementarity. The second part of the assumption says 
that these net payoffs are bounded.

The payoff specification in the debt run application is a special case of this gen-
eral payoff structure with ​​u –​  =  r  >  0​ and ​−​ u _ ​  ∈  [0, 1]​. Below, we show that under 
the general payoff structure that satisfy Assumption 1, the argument ​​N​j​​​ holds true 
for any ​j  =  1, 2, …, J​.

In this application, statement ​​M​j​​​ can be interpreted as the following: no cred-
itor from later groups will withdraw if the borrower can service the withdrawal 
from group ​j​, i.e., ​​w​l​​  =  0​ for all ​l  >  j​. That means ​θ  ⋛  α ​∑ l=1​ J  ​​ ​w​l​​​ is equivalent 
to ​θ  ⋛  α ​∑ l=1​ 

j  ​​ ​w​l​​​. Hence, we will follow the proof of Lemma 3 to prove the argu-
ment ​​N​j​​​.

Consider the marginal agent who receives the cutoff signal ​​​s ˆ ​​j​​​. Upon receiv-
ing the public news that the borrower is still viable at ​(  j − 1)α​, he believes ​θ 
≥ ​​ θ _​​j−1​​​ for some ​​​θ _​​j−1​​​. He also understands that the borrower will not default 
if ​θ  ≥ ​ A​j​​ (​​s ˆ ​​j​​, α, ​​θ _​​j−1​​)​ (as defined in (​​A​ j​ α​​)). Therefore, the marginal agent will roll 
over if he believes that the probability of no default

	​ Pr ​(θ  ≥ ​ A​j​​ | ​​s ˆ ​​j​​, θ  ≥ ​​ θ _​​j−1​​)​  > ​   1  __________________   
1 + ​ 

E​(​u –​ | θ  ≥ ​ A​j​​, ​​s ˆ ​​j​​)​  _______________  
E​(−​ u _ ​ | ​​θ _​​j−1​​  ≤  θ  < ​ A​j​​, ​​s ˆ ​​j​​)​

 ​
 ​​ .

It follows from Assumption 1 that, regardless of ​​​s ˆ ​​j​​​ and ​​A​j​​​, the RHS of the inequality  
above is lower than ​​p – ​  ≡  1/​(1 + (​ n _ ​/​m – ​))​​. Therefore, ​α  < ​ α ˆ ​( ​p – ​, τ)​ is a sufficient 
condition to guarantee that the marginal agent strictly prefers to roll over. Since 
this is true for any ​​​s ˆ ​​j​​​ and ​​​θ _​​j−1​​​, the inductive argument ​​N​j​​​ holds true. Then, follow-
ing the same inductive argument as in Theorem 1, the statement ​​M​j​​​ is true for all ​
j  =  0, 1, 2, …, J​. ∎

PROOF OF PROPOSITION 2:
Under uniform prior, the belief of the marginal agent in any group ​j​ 

(see equation (5)) simplifies to ​​G​​ u​(x, α; τ)  ≔  x/F(α ​√ _ τ ​ x + ​F​​ −1​(x))​, where  
​x  = ​ (​A​j​​ − ​​θ _​​j−1​​)​/α​ . It follows from Lemma 1 that there exists a necessary and 
sufficient threshold ​​α​​ ∗​( p, τ)​.
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Hence, whenever ​α  < ​ α​​ ∗​( p, τ)​, ​​G​​ u​(x, α; τ)  >  p​ for all ​x  ∈  [0, 1]​ (regardless 
of ​​​θ _​​j−1​​​). That means argument ​​N​j​​​ is true for all ​j  ≥  1​ when ​α  < ​ α​​ ∗​( p, τ)​.

On the other hand, for ​α  ≥ ​ α​​ ∗​( p, τ)​, there exits ​​x​​ ∗​  ∈  (0, 1]​ that solves 
​​G​​ u​(​x​​ ∗​, α, τ)  =  p​. Thus, it is always an equilibrium if the agents in the first group 
follow a cutoff strategy ​​​s ˆ ​​1​​  =  α ​x​​ ∗​ + σ ​F​​ −1​(​x​​ ∗​)​ and no agent attacks after the regime 
passes the second viability test. The regime survives if and only if ​θ  ≥  α ​x​​ ∗​  >  0​. 
Therefore, a diffused policy is persuasive if and only if ​J  > ​ J​​ ∗​  ≡  1/​α​​ ∗​( p, τ)​.

Note that ​​G​​ u​(x, α; τ)​ is decreasing in ​α​ and ​τ​. Let us first consider ​p′  ≥  p​. If 
​α  < ​ α​​ ∗​( p′, τ)​, then ​​G​​ u​(x, α; τ)  >  p′  ≥  p​ for all ​x  ∈  [0, 1]​. Hence, ​​α​​ ∗​( p′, τ) 
≤ ​ α​​ ∗​( p, τ)​. Next, consider ​τ′  ≥  τ​. If ​α  < ​ α​​ ∗​( p, τ′ )​, then ​​G​​ u​(x, α; τ′ ) 
>  p​ for all ​x  ∈  [0, 1]​. Since ​​G​​ u​(x, α; τ)​ is decreasing in ​τ​, and ​τ′  ≥  τ​, we have 
​​G​​ u​(x, α; τ)  >  p​ for all ​x  ∈  [0, 1]​ whenever ​α  < ​ α​​ ∗​( p, τ′ )​. Hence, ​​α​​ ∗​( p, τ′ ) 
≤ ​ α​​ ∗​( p, τ)​. ∎

PROOF OF PROPOSITION 3:
We will prove the argument ​​N​j​​​ for all ​j  =  1, 2, …, J​ and the inductive steps 

are the same as in the proof of Theorem 1. Consider any group ​j​. Suppose some ​​w ̃ ​ 
≤  (  j − 1)α​ proportion of agents have attacked so far. Then, PNV implies that ​θ 
≥ ​ w ̃ ​​. Under statement ​​M​j​​​, the regime will survive if it can sustain the attacks from 
the current group. Hence, if ​θ  ≥ ​ w ̃ ​ + α​, it survives for sure since it is strong 
enough to withstand all possible attacks from group ​j​. Therefore, no one in any 
group ​j​ attacks a regime that passes the ​j​th viability test if for any ​​w ̃ ​  ≤  (  j − 1)α​,

	​ Pr ​(θ  ≥ ​ w ̃ ​ + α | θ  ≥ ​ w ̃ ​, s)​  = ​ 
F​(​√ _ τ ​​(s − ​w ̃ ​ − α)​)​

  _____________  
F​(​√ _ τ ​ ​(s − ​w ̃ ​)​)​ ​   >  p​.

Given log-concavity of ​f​, this probability is decreasing in ​​w ̃ ​​. Therefore, the mini-
mum possible value for the probability above is when ​​w ̃ ​  =  (  j − 1)α​ and ​j  =  J​. 
Hence, if

(6)	​ ​ 
F​(​√ _ τ ​ ​(s − 1)​)​

  _____________  
F​(​√ _ τ ​ ​(s − 1 + α)​)​ ​  >  p​,

no agent in any group ​j​ will attack a viable regime regardless of their belief about the 
past attacks ​​w ̃ ​​. This gives us ​​N​j​​​, i.e., if ​​M​j​​​ is true then so is ​​M​j−1​​​.

	 (i)	 Note that if ​s  >  1 − (σ/2)​, then ​Pr (θ  ≥  1 | s)  =  F(​√ _ τ ​ (s − 1))  >  0​. The 
LHS of inequality (6) is continuous and decreasing in ​α​, and converges to ​1​ 
as ​α  →  0​. Therefore, there exists ​​α​​ ∗​(s)​ such that if ​α  ≤ ​ α​​ ∗​(s)​, inequality 
(6) and thus the inductive argument ​​N​j​​​ hold true. Moreover, since the LHS 
of inequality (6) is continuously increasing in ​s​ (given log-concave ​f​  ) and 
continuously decreasing in ​α​, ​​α​​ ∗​(s)​ is continuously increasing in ​s​. In other 
words, ​​J​​ ∗​(s)​ increases continuously when ​s​ decreases.

	 (ii)	 If ​s  ≤  1 − (σ/2)​, ​Pr (θ  ≥  1 | s)  =  F(​√ _ τ ​ (s − 1))  =  0​. So, inequality (6) 
is violated regardless of ​α​. Therefore, if the agents in the last group believe 
that all their predecessors have attacked, they will attack as well. Thus, agents 
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in group ​J − 1​ can also attack if they think the agents in group ​J​ will and so 
on. Thus, all attack is a possible equilibrium outcome.

	 (iii)	 For any ​θ  <  1​, there is a positive probability that a public signal ​
s  ≤  1 − (σ/2)​ will be realized. Upon receiving such signal, it is possible 
that all the agents attack, regardless of the policy ​J​. ∎
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